精英家教网 > 高中数学 > 题目详情
如图2-3-15,设P是正方形ABCD外一点,且PA⊥平面ABCD,则平面PAB与平面PBC、平面PAD的位置关系是(    )

图2-3-15

A.平面PAB与平面PBC、平面PAD都垂直

B.它们两两都垂直

C.平面PAB与平面PBC垂直、与平面PAD不垂直

D.平面PAB与平面PBC、平面PAD都不垂直

思路解析:∵PA⊥平面ABCD,

∴PA⊥BC.又

∵BC⊥AB,PA∩AB=A,

∴PC⊥平面PAB,从而平面PBC⊥平面PAB.

由AD⊥PA,AD⊥AB,PA∩AB=A得AD⊥平面PAB.

∵AD平面PAD,

∴平面PAD⊥平面PAB.

答案:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

为迎接建党90周年,某班开展了一次“党史知识竞赛”,竞赛分初赛和决赛两个阶段进行,在初赛后,把成绩(满分为100分,分数均匀整数)进行统计,制成如图的频率分布表:
序号 分组(分数段) 频数(人数) 频率
1 [0,60) a 0.1
2 [60,75) 15 b
3 [75,90) 20 0.4
4 [90,100] c d
合计 50 1
(Ⅰ)求a,b,c,d的值;
(Ⅱ)决赛规则如下:为每位参加决赛的选手准备四道题目,选手对其依次作答,答对两道就终止答题,并获得一等奖,若题目答完仍然只答对一道,则获得二等奖.某同学进入决赛,每道题答对的概率P的值恰好与频率分布表中不少于90分的频率的值相同.设该同学决赛中答题个数为X,求X的分布列以及X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

在古腊毕达哥拉斯学派把1,3,6,10,15,21,28,…这些数叫做三角形数,因为这些数对应的点可以排成一个正三角形如图所示,设第n个三角形数为f(n),则
1
f(1)
+
1
f(2)
+
1
f(3)
…+
1
f(n)
=
2n
n+1
2n
n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

某区组织群众性登山健身活动,招募了N名师生志愿者,将所有志愿者现按年龄情况分为15~20,20~25,25~30,30~35,35~40,40~45等六个层次,其频率分布直方图如图所示:已知30~35之间的志愿者共8人.
(Ⅰ)求N和20~30之间的志愿者人数N1
(Ⅱ)已知20~25和30~35之间各有2名英语教师,现从这两个层次各选取2人担任接待工作,设两组的选择互不影响,求两组选出的人选中都至少有1名英语教师的概率是多少?
(Ⅲ)组织者从35~45之间的志愿者(其中共有4名女教师,其余全为男教师)中随机选取3名担任后勤保障工作,其中女教师的数量为ξ,求ξ的概率和分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图2-3-15,设P是正方形ABCD外一点,且PA⊥平面ABCD,则平面PAB与平面PBC、平面PAD的位置关系是(    )

图2-3-15

A.平面PAB与平面PBC、平面PAD都垂直

B.它们两两都垂直

C.平面PAB与平面PBC垂直、与平面PAD不垂直

D.平面PAB与平面PBC、平面PAD都不垂直

查看答案和解析>>

同步练习册答案