精英家教网 > 高中数学 > 题目详情
8.已知$\left\{\begin{array}{l}{sinα+sinβ=\frac{1}{2}}\\{y=co{s}^{2}α-sinβ}\end{array}\right.$,求值域.

分析 利用已知条件,化简所求表达式只有一个角的三角函数的形式,通过三角函数以及二次函数的性质求解表达式的最值即可.

解答 解:sinα+sinβ=$\frac{1}{2}$,则$y=co{s}^{2}α+sinα-\frac{1}{2}$=-sin2α+sinα+$\frac{1}{2}$=-(sinα-$\frac{1}{2}$)2+$\frac{3}{4}$.
∵sinα+sinβ=$\frac{1}{2}$,∴sinα∈[-$\frac{1}{2}$,1],
∴sinα=$\frac{1}{2}$时,函数取得最大值:$\frac{3}{4}$.
sinα=-1时,函数取得最小值:-$\frac{3}{2}$.
函数的值域为[-$\frac{3}{2}$,$\frac{3}{4}$].

点评 本题考查三角函数的最值的求法,涉及二次函数的性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.设集合A的元素都是正整数,满足:①A的元素个数不小于3;②若a∈A,b∈A,1<a<b,则1+ab∈A.③若a∈A,则a的所有因子都属于A.回答下面的问题:
(1)证明:1,2,3,4,5,均为A中元素;
(2)问:2011是否属于A.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=nlnx-mx+m,m,n∈R
(1)证明:曲线y=f(x)必经过过定点(1,0);
(2)若曲线y=f(x)与x轴相切,证明 m=n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆b2x2+a2y2=a2b2(a>b>0)截直线l1:bx-ay=ab所得弦长为2$\sqrt{2}$,过椭圆右焦点且斜率为$\sqrt{3}$的直线l2被椭圆截得的弦长是椭圆长轴长的$\frac{2}{5}$,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在等比数列{an}中,a5a7=2,a2+a10=3,则$\frac{{a}_{12}}{{a}_{4}}$=$\frac{1}{2}$或2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某校把一块形状为正三角形的边角地ABC开辟为生态园,如图所示,其中AB=2a,DE把三角形分成面积相等的两个部分,D在线段AB上,E在线段AC上.
(1)设AD=x,ED=y,求用x表示y的函数关系式,并写出它的定义域;
(2)如果DE是灌溉水渠的位置,为了省钱希望它最短,那么DE的位置应该在哪里,如果DE是参观路线,却希望它最长,那么DE的位置又应该在哪里?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=2cos(2ωx+$\frac{π}{6}$)+$\sqrt{3}$的图象与直线y=-2+$\sqrt{3}$的相邻两个交点之间的距离为π.
(1)求ω的值;
(2)求函数f(x)在[0,2π]上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.函数f(x)=|2x-1|-|x-2|,若f(x)≥0,
(1)求x的取值范围;
(2)若f(x)=3|x-1|,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,一块半径为2米的半圆形钢板,O为圆心,现从中截出两块内接矩形部件ABCD和EFGH,且HG=2FG,点P为GH的中点,∠POG=θ.
(1)当θ=15°时,求矩形ABCD的面积;
(2)设△OGH的面积为S,当θ变化时,求y=S+BC的最大值.

查看答案和解析>>

同步练习册答案