精英家教网 > 高中数学 > 题目详情

(09年青岛质检理)(12分)

已知均在椭圆上,直线分别过椭圆的左右焦点,当时,有.

(Ⅰ)求椭圆的方程;

(Ⅱ)设是椭圆上的任一点,为圆的任一条直径,求的最大值.

 解析:(Ⅰ)因为,所以有

所以为直角三角形;…………………………2分

则有

所以,…………………………3分

………………………4分

中有

,解得

所求椭圆方程为…………………………6分

 (Ⅱ)

从而将求的最大值转化为求的最大值…………………………8分

是椭圆上的任一点,设,则有

,所以………………………10分

,所以当时,取最大值

的最大值为…………………………12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(09年青岛质检理)(14分)

已知等比数列的前项和为

(Ⅰ)求数列的通项公式;

(Ⅱ)设数列满足为数列 的前项和,试比较 与 的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年青岛质检理)(12分)

在四棱锥中,平面,底面为矩形,.

(Ⅰ)当时,求证:

(Ⅱ) 若边上有且只有一个点,使得,求此时二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年青岛质检理)(12分)

已知函数,求函数的极大值与极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年青岛质检理)(12分)

在一个盒子中,放有标号分别为的三张卡片,现从这个盒子中,有放回地先后抽

得两张卡片的标号分别为,设为坐标原点,点的坐标为,记

(Ⅰ)求随机变量的最大值,并求事件“取得最大值”的概率;

(Ⅱ)求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年青岛质检理)(12分)

中,分别是的对边长,已知.

(Ⅰ)若,求实数的值;

(Ⅱ)若,求面积的最大值.

查看答案和解析>>

同步练习册答案