精英家教网 > 高中数学 > 题目详情
11.设O是△ABC的内心,AB=c,AC=b,若$\overrightarrow{AO}={λ_1}\overrightarrow{AB}+{λ_2}\overrightarrow{AC}$,则(  )
A.$\frac{λ_1}{λ_2}=\frac{b}{c}$B.$\frac{λ_1^2}{λ_2^2}=\frac{b}{c}$C.$\frac{λ_1}{λ_2}=\frac{c^2}{b^2}$D.$\frac{λ_1^2}{λ_2^2}=\frac{c}{b}$

分析 利用O为△ABC内角平分线的交点,则有a×$\overrightarrow{OA}$+b×$\overrightarrow{OB}$+c×$\overrightarrow{OC}$=0,再利再利用三角形中向量之间的关系,将等式变形为$\overrightarrow{AO}$=$\frac{b}{a+b+c}$$\overrightarrow{AB}$+$\frac{c}{a+b+c}$$\overrightarrow{AC}$,利用平面向量基本定理即可解.

解答 解:设O是△ABC的内心,AB=c,AC=b,
则a×$\overrightarrow{OA}$+b×$\overrightarrow{OB}$+c×$\overrightarrow{OC}$=0,
∴a×$\overrightarrow{OA}$+b×($\overrightarrow{OA}$+$\overrightarrow{AB}$)+c×($\overrightarrow{OA}$+$\overrightarrow{AC}$)=0,
∴(a+b+c)$\overrightarrow{AO}$=b$\overrightarrow{AB}$+c$\overrightarrow{AC}$,
∴$\overrightarrow{AO}$=$\frac{b}{a+b+c}$$\overrightarrow{AB}$+$\frac{c}{a+b+c}$$\overrightarrow{AC}$,
∵$\overrightarrow{AO}={λ_1}\overrightarrow{AB}+{λ_2}\overrightarrow{AC}$,
∴λ1=$\frac{b}{a+b+c}$,λ2=$\frac{c}{a+b+c}$,
∴$\frac{{λ}_{1}}{{λ}_{2}}$=$\frac{b}{c}$
故选:A

点评 本题考查向量知识,考查平面向量基本定理的运用,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.在平面直角坐标系xOy中,300°角终边上一点P的坐标为(1,m),则实数m的值为-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设a,b是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是(  )
A.若a∥α,b∥β,则a∥bB.若a?α,b?β,a∥b,则α∥β
C.若a∥b,b∥α,α∥β,则a∥βD.若a⊥α,a⊥β,b⊥β,则b⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.“a>b“是“a3>b3”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知{an}是等差数列,{bn}是等比数列,且b2=2,b3=4,a1=b1,a8=b4
(Ⅰ)求{an}的通项公式;
(Ⅱ)设cn=an+bn,求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知直线l1:(3+m)x-4y=5-3m,l2:2x-y=8平行,则实数m的值为(  )
A.5B.-5C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆C关于y轴对称,经过P(1,0)点,且被直线y=x分成两段弧长之比为1:2.
(Ⅰ)求圆C的方程;
(Ⅱ)若圆C的圆心在x轴下方,过点P(-2,1)作直线l与圆C相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知对任意的a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值总大于0,则x的取值范围是(  )
A.x<1或x>3B.1<x<3C.1<x<2D.x<2或x>3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,且$\overrightarrow{a}$•$\overrightarrow{b}$=-3,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{2π}{3}$.

查看答案和解析>>

同步练习册答案