A. | $\frac{λ_1}{λ_2}=\frac{b}{c}$ | B. | $\frac{λ_1^2}{λ_2^2}=\frac{b}{c}$ | C. | $\frac{λ_1}{λ_2}=\frac{c^2}{b^2}$ | D. | $\frac{λ_1^2}{λ_2^2}=\frac{c}{b}$ |
分析 利用O为△ABC内角平分线的交点,则有a×$\overrightarrow{OA}$+b×$\overrightarrow{OB}$+c×$\overrightarrow{OC}$=0,再利再利用三角形中向量之间的关系,将等式变形为$\overrightarrow{AO}$=$\frac{b}{a+b+c}$$\overrightarrow{AB}$+$\frac{c}{a+b+c}$$\overrightarrow{AC}$,利用平面向量基本定理即可解.
解答 解:设O是△ABC的内心,AB=c,AC=b,
则a×$\overrightarrow{OA}$+b×$\overrightarrow{OB}$+c×$\overrightarrow{OC}$=0,
∴a×$\overrightarrow{OA}$+b×($\overrightarrow{OA}$+$\overrightarrow{AB}$)+c×($\overrightarrow{OA}$+$\overrightarrow{AC}$)=0,
∴(a+b+c)$\overrightarrow{AO}$=b$\overrightarrow{AB}$+c$\overrightarrow{AC}$,
∴$\overrightarrow{AO}$=$\frac{b}{a+b+c}$$\overrightarrow{AB}$+$\frac{c}{a+b+c}$$\overrightarrow{AC}$,
∵$\overrightarrow{AO}={λ_1}\overrightarrow{AB}+{λ_2}\overrightarrow{AC}$,
∴λ1=$\frac{b}{a+b+c}$,λ2=$\frac{c}{a+b+c}$,
∴$\frac{{λ}_{1}}{{λ}_{2}}$=$\frac{b}{c}$
故选:A
点评 本题考查向量知识,考查平面向量基本定理的运用,考查学生的计算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | 若a∥α,b∥β,则a∥b | B. | 若a?α,b?β,a∥b,则α∥β | ||
C. | 若a∥b,b∥α,α∥β,则a∥β | D. | 若a⊥α,a⊥β,b⊥β,则b⊥α |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | x<1或x>3 | B. | 1<x<3 | C. | 1<x<2 | D. | x<2或x>3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com