精英家教网 > 高中数学 > 题目详情
已知f(x)是定义在实数集R上的奇函数,且当x>0时,f(x)=x2-4x+3,
(Ⅰ)求f[f(-1)]的值;  
(Ⅱ)求函数f(x)的解析式;  
(Ⅲ)求函数f(x)在区间[t,t+1](t>0)上的最小值.
分析:(Ⅰ)由题意可得:f(-1)=-f(1),并且f(0)=0.由已知可得f(1)=0,所以f(-1)=0,进而得到答案.
(Ⅱ)设x<0则-x>0,所以f(-x)=x2+4x+3,结合函数的奇偶性可得:f(x)=-x2-4x-3,进而写出函数的解析式.
(Ⅲ)由题意可得:f(x)=x2-4x+3,x∈[t,t+1],所以二次函数的对称轴为x=2,根据二次函数的性质讨论对称轴与区间的位置关系,进而得到答案.
解答:解:(Ⅰ)由题意可得:f(x)是定义在实数集R上的奇函数,
所以f(-1)=-f(1),并且f(0)=0.
又因为当x>0时,f(x)=x2-4x+3,
所以f(1)=0,
所以f(-1)=0.
所以f[f(-1)]=f(0)=0…4′
(Ⅱ)设x<0则-x>0,
因为当x>0时,f(x)=x2-4x+3,
所以f(-x)=x2+4x+3,
又因为f(x)是定义在实数集R上的奇函数,
所以f(x)=-x2-4x-3.
所以f(x)=
x2-4x+3(x>0)
0(x=0)
-x2-4x-3(x<0)
…4′
(Ⅲ)由题意可得:f(x)=x2-4x+3,x∈[t,t+1],
所以二次函数的对称轴为x=2,
当t+1<2,即0<t≤1时,f(x)在[t,t+1]上单调递减,
所以f(x)min=f(t+1)=t2-2t.
当t>2时,f(x)在[t,t+1]上单调递增,
所以f(x)min=f(t)=t2-4t+3.
当t≤2<t+1时,即1<t≤2时,f(x)在[t,t+1]上先减后增,
所以f(x)min=f(2)=-1.
所以f(x)min=
t2-2t(0<t≤1)
-1(1<t≤2)
t2-4t+3(t>2)
…6′
点评:解决此类问题的关键是熟练掌握求函数解析式的方法,以及熟练掌握二次函数的有关性质,并且熟练利用其性质求函数的最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在(-4,4)上的奇函数,它在定义域内单调递减 若a满足f(1-a)+f(2a-3)小于0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,都有
f(a)+f(b)
a+b
>0

(1)证明函数a=1在f(x)=-x2+x+lnx上是增函数;
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
对所有f'(x)=0,任意x=-
1
2
恒成立,求实数x=1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

8、已知f(x)是定义在R上的函数,f(1)=1,且对任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,则g(2009)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在实数集R上的增函数,且f(1)=0,函数g(x)在(-∞,1]上为增函数,在[1,+∞)上为减函数,且g(4)=g(0)=0,则集合{x|f(x)g(x)≥0}=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0)上是增函数,设a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),则a,b,c的大小关系
a>b>c
a>b>c

查看答案和解析>>

同步练习册答案