【题目】已知集合,其中,由中的元素构成两个相应的集合:
, .
其中是有序数对,集合和中的元素个数分别为和.
若对于任意的,总有,则称集合具有性质.
(Ⅰ)检验集合与是否具有性质并对其中具有性质的集合,写出相应的集合和.
(Ⅱ)对任何具有性质的集合,证明.
(Ⅲ)判断和的大小关系,并证明你的结论.
【答案】(Ⅰ)集合不具有性质,集合具有性质,相应集合, ,集合, (Ⅱ)见解析(Ⅲ)
【解析】解:集合不具有性质.
集合具有性质,其相应的集合和是,
.
(II)证明:首先,由中元素构成的有序数对共有个.
因为,所以;
又因为当时, 时, ,所以当时, .
从而,集合中元素的个数最多为,
即.
(III)解: ,证明如下:
(1)对于,根据定义, , ,且,从而.
如果与是的不同元素,那么与中至少有一个不成立,从而与中也至少有一个不成立.
故与也是的不同元素.
可见, 中元素的个数不多于中元素的个数,即,
(2)对于,根据定义, , ,且,从而.如果与是的不同元素,那么与中至少有一个不成立,从而与中也不至少有一个不成立,
故与也是的不同元素.
可见, 中元素的个数不多于中元素的个数,即,
由(1)(2)可知, .
科目:高中数学 来源: 题型:
【题目】已知函数 ,且满足.
(1)判断函数在上的单调性,并用定义证明;
(2)设函数,求在区间上的最大值;
(3)若存在实数m,使得关于x的方程恰有4个不同的正根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行抽样检查,测得身高情况的统计图如图所示:
(1)估计该校男生的人数;
(2)估计该校学生身高在170~185cm的概率;
(3)从样本中身高在180~190cm的男生中任选2人,求至少有1人身高在185~190cm的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设为集合的子集,且,若,则称为集合的元“大同集”.
(1)写出实数集的一个二元“大同集”;
(2)是否存在正整数集的二元“大同集”,请说明理由;
(3)求出正整数集的所有三元“大同集”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,定义域为上的函数是由一条射线及抛物线的一部分组成.利用该图提供的信息解决下面几个问题.
(1)求的解析式;
(2)若关于的方程有三个不同解,求的取值范围;
(3)若,求的取值集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业准备推出一种花卉植物用于美化城市环境,为评估花卉的生长水平,现对该花卉植株的高度(单位:厘米)进行抽查,所得数据分组为,据此制作的频率分布直方图如图所示.
(1)求出直方图中的值;
(2)利用直方图估算花卉植株高度的中位数;
(3)若样本容量为32,现准备从高度在的植株中继续抽取2颗做进一步调查,求抽取植株来自同一组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点与短轴的一个端点是等边三角形的三个顶点,且长轴长为4.
求椭圆E的方程;
若A是椭圆E的左顶点,经过左焦点F的直线l与椭圆E交于C,D两点,求与为坐标原点的面积之差绝对值的最大值.
已知椭圆E上点处的切线方程为,T为切点若P是直线上任意一点,从P向椭圆E作切线,切点分别为N,M,求证:直线MN恒过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三角形的面积为,其中,,为三角形的边长,为三角形内切圆的半径,则利用类比推理,可得出四面体的体积为( )
A.
B.
C. ,(为四面体的高)
D. ,(,,,分别为四面体的四个面的面积,为四面体内切球的半径)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com