精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x3-3ax+b在x=1处有极小值2.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若函数数学公式在[0,2]只有一个零点,求m的取值范围.

解:(I)f'(x)=3x2-3a…(1分)
依题意有,…(3分)
解得,…(4分)
此时f'(x)=3x2-3=3(x-1)(x+1),
x∈(-1,1),f'(x)<0,x∈(1,+∞),f'(x)>0,满足f(x)在x=1处取极小值
∴f(x)=x3-3x+4…(5分)
(Ⅱ)f'(x)=3x2-3
…(6分)
当m=0时,g(x)=-2x+3,
∴g(x)在[0,2]上有一个零点(符合),…(8分)
当m≠0时,
①若方程g(x)=0在[0,2]上有2个相等实根,即函数g(x)在[0,2]上有一个零点.
,得…(10分)
②若g(x)有2个零点,1个在[0,2]内,另1个在[0,2]外,
则g(0)g(2)≤0,即(-m+3)(3m-1)≤0,解得,或m≥3…(12分)
经检验m=3有2个零点,不满足题意.
综上:m的取值范围是,或,或m>3…(14分)
分析:(I)求导函数f'(x)=3x2-3a,利用函数f(x)=x3-3ax+b在x=1处有极小值2,可得,从而可求函数f(x)的解析式;
(Ⅱ),再进行分类讨论:当m=0时,g(x)=-2x+3,g(x)在[0,2]上有一个零点;当m≠0时,①若方程g(x)=0在[0,2]上有2个相等实根,即函数g(x)在[0,2]上有一个零点;②若g(x)有2个零点,1个在[0,2]内,另1个在[0,2]外,从而可求m的取值范围.
点评:本题以函数的性质为载体,考查函数的解析式,考查导数知识的运用,考查函数的零点,考查分类讨论的数学思想,综合性强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案