分析 α是第二象限角,可得cosα<0.利用同角三角函数基本关系式可得$\sqrt{\frac{1-sinα}{1+sinα}}$=-$\frac{1-sinα}{cosα}$,$\sqrt{\frac{1-cosα}{1+cosα}}$=$\frac{1-cosα}{sinα}$.即可得出.
解答 解:∵α是第二象限角,∴cosα<0.
∴$\sqrt{\frac{1-sinα}{1+sinα}}$=$\sqrt{\frac{(1-sinα)^{2}}{(1+sinα)(1-sinα)}}$=-$\frac{1-sinα}{cosα}$.
同理可得:$\sqrt{\frac{1-cosα}{1+cosα}}$=$\frac{1-cosα}{sinα}$.
原式=cosα•$\frac{sinα-1}{cosα}$+$sinα•\frac{1-cosα}{sinα}$
=sinα-1+1-cosα
=sinα-cosα.
点评 本题考查了同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com