精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥的底面是正方形,每条侧棱的长都是底面边长的倍,为侧棱上的点.

(1)求证:

(2)若平面,求二面角的大小;

(3)在(2)的条件下,侧棱上是否存在一点,使得平面.若存在,求的值;若不存在,试说明理由.

【答案】(1)见证明;(2) (3)见解析

【解析】

(1)先证明平面,即可得到

(2)由题设知,连,设交于,由题意知平面.以为坐标原点,分别为轴、轴、轴正方向,建立空间直角坐标系,分别求出平面与平面的一个法向量,求法向量的夹角余弦值,即可求出结果;

(3)要使平面,只需与平面的法向量垂直即可,结合(2)中求出的平面的一个法向量,即可求解.

(1)连,由题意.

在正方形中,

所以平面,得

(2)由题设知,连,设交于,由题意知平面.以为坐标原点,分别为轴、轴、轴正方向,建立坐标系如图.

设底面边长为,则高.

平面

则平面的一个法向量

平面的一个法向量

又二面角为锐角,则二面角

(3)在棱上存在一点使平面.由(2)知是平面的一个法向量,

平面,所以

.

即当时,

不在平面内,故平面.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线C的参数方程为 (为参数),以直角坐标系原点为极点,x轴非负半轴为极轴并取相同的单位长度建立极坐标系,

(1)求曲线C的极坐标方程,并说明其表示什么轨迹;

(2)若直线l的极坐标方程为,求曲线C上的点到直线l的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区某农产品近几年的产量统计如表:

年份

2012

2013

2014

2015

2016

2017

年份代码t

1

2

3

4

5

6

年产量y(万吨)

6.6

6.7

7

7.1

7.2

7.4

Ⅰ)根据表中数据,建立关于的线性回归方程

(Ⅱ)根据线性回归方程预测2019年该地区该农产品的年产量.

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:.(参考数据:,计算结果保留小数点后两位)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】5名运动员参加一次乒乓球比赛,每名运动员都赛场并决出胜负.设第位运动员共胜场,负场(),则错误的结论是( )

A.

B.

C. 为定值,与各场比赛的结果无关

D. 为定值,与各场比赛结果无关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合 .对于,定义之间的距离为

(Ⅰ),写出所有

(Ⅱ)任取固定的元素,计算集合中元素个数;

(Ⅲ)设中有个元素,记中所有不同元素间的距离的最小值为.证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:①若线性回归方程为,则当变量增加一个单位时,一定增加3个单位;②将一组数据中的每个数据都加上同一个常数后,方差不会改变;③线性回归直线方程必过点;④抽签法属于简单随机抽样;其中错误的说法是(

A.①③B.②③④C.D.①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某校高一1000名学生的物理成绩,随机抽查了部分学生的期中考试成绩,将数据整理后绘制成如图所示的频率分布直方图.

1)估计该校高一学生物理成绩不低于80分的人数;

2)若在本次考试中,规定物理成绩在m分以上(包括m分)的为优秀,该校学生物理成绩的优秀率大约为18%,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知极坐标系的极点在平面直角坐标系的原点处,极轴与轴的正半轴重合,且长度单位相同;曲线 的方程是,直线的参数方程为为参数,),设 直线与曲线交于 两点.

(1)当时,求的长度;

(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)已知是定义在上的奇函数,求实数的值;

(2)已知是定义在上的函数,求实数的取值范围.

查看答案和解析>>

同步练习册答案