精英家教网 > 高中数学 > 题目详情

【题目】已知函数为偶函数,且当时,..给出下列关于函数的说法:①当时,;②函数为奇函数;③函数上为增函数;④函数的最小值为,无最大值.其中正确的是______.

【答案】①③

【解析】

gxFx)=max{fx),gx}xR.画出图象,数形结合即可得出.

为偶函数,且当时,

∴令,则,则

即当时,

gx

Fx)=max{fx),gx}xR

画出图象,

由图象可得:①当x≥6时,∵x24x≥2x,∴Fx)=x24x,因此正确.

②由图象可得:函数Fx)不为奇函数,因此不正确.

③﹣2≤x≤6时,2xx24x,可得函数Fx)=2x,因此函数Fx)在[26]上为增函数,所以函数Fx)在[22]上为增函数是正确的.

x2时,gx)=x2+4x≥2x,可得Fx)=x2+4x4,综合可得函数Fx)的最小值为﹣4,无最大值,④不正确.

其中正确的是 ①③.

故答案为①③.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量 = (1,2sinθ),= (sin(θ+),1),θR。

(1) ,求 tanθ的值;

(2) ,且 θ (0,),求 θ的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某地区乡居民人民币储蓄存款(年底余额如下表

年份

2012

2013

2014

2015

2016

2017

时间代号

1

2

3

4

5

6

储蓄存款(千亿元)

3.5

5

6

7

8

9.5

(1)求关于的回归方程,并预测该地区2019年的人民币储蓄存款(用最简分数作答).

(2)在含有一个解释变量的线性模型中,恰好等于相关系数的平方,当时,认为线性回归模型是有效的,请计算并且评价模型的拟合效果(计算结果精确到).

附:

, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《周髀算经》中给出了勾股定理的绝妙证明.下图是赵爽弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实,图中包含四个全等的勾股形及一个小正方形,分别涂成朱色及黄色,其面积称为朱实、黄实.2(股勾)24朱实黄实弦实,化简得勾222.若图中勾股形的勾股比为,若向弦图内随机抛掷2000颗图钉(大小忽略不计),则落在黄色图形内的图钉颗数大约为( )(参考数据:

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某动漫影视制作公司长期坚持文化自信,不断挖掘中华优秀传统文化中的动漫题材,创作出一批又一批的优秀动漫影视作品,获得市场和广大观众的一致好评.同时也为公司赢得丰厚的利润,该公司2013年至2019年的年利润关于年份代号的统计数据如下表(已知该公司的年利润与年份代号线性相关)

年份

2013

2014

2015

2016

2017

2018

2019

年份代号

1

2

3

4

5

6

7

年利润(单位:亿元)

29

33

36

44

48

52

59

1)求关于的线性回归方程,并预测该公司2020年的年利润;

2)当统计表中某年年利润的实际值大于由(1)中线性回归方程计算出该年利润的估计值时,称该年为A级利润年,否则称为B级利润年.现从2015年至2019年这5年中随机抽取2年,求恰有1年为A级利润年的概率.

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列关于古典概型的说法中正确的是( )

①试验中所有可能出现的基本事件只有有限个;

②每个事件出现的可能性相等;

③每个基本事件出现的可能性相等;

④基本事件的总数为n,随机事件A若包含k个基本事件,则.

A. ②④ B. ③④ C. ①④ D. ①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某生产厂家生产一种产品的固定成本为4万元,并且每生产1百台产品需增加投入0.8万元.已知销售收入(万元)满足(其中是该产品的月产量,单位:百台),假定生产的产品都能卖掉,请完成下列问题:

(1)将利润表示为月产量的函数

(2)当月产量为何值时,公司所获利润最大?最大利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点为椭圆的左焦点,直线被椭圆截得弦长为

(1)求椭圆的方程;

(2)圆与椭圆交于两点, 为线段上任意一点,直线交椭圆两点为圆的直径,且直线的斜率大于,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,焦距为,抛物线 的焦点是椭圆的顶点.

(1)求的标准方程;

(2)上不同于的两点 满足,且直线相切,求的面积.

查看答案和解析>>

同步练习册答案