试题分析:(I) 因为函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031744689447.png)
满足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031744705735.png)
,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031744720603.png)
,所以可得f(x)=2f(x+2)=4f(x+4)当x
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031744985246.png)
(-4,-2),则x+4
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031744985246.png)
(0,2)这样就可以f(x)=4f(x+4)=4ln(x+4)+4
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031744798283.png)
(x+4).所以通过求导可求出f(x)的导数,再根据
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031744798283.png)
的取值范围求出函数的单调区间即可求出最大值.从而解出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031744798283.png)
的值.
(II)假设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031744689447.png)
的值域为A,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745079442.png)
的值域为B,则由已知,对于任意的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745095585.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745110263.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745126602.png)
,使
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031744892749.png)
得,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745157441.png)
即函数f(x)值域的范围比函数g(x)值域的范围小即可.对于函数g(x)的单调性要考虑b的值.再根据,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745157441.png)
即可得结论.
试题解析:(I)由已知,得2f(x+2)=f(x),所以f(x)=2f(x+2)=4f(x+4).又因为x
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031744985246.png)
(0,2)时,f(x)=lnx+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031744798283.png)
x.设x
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031744985246.png)
(-4,-2),则x+4
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031744985246.png)
(0,2).所以f(x+4)="ln(x+4)+"
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031744798283.png)
(x+4).所以x
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031744985246.png)
(-4,-2)时,f(x)=4f(x+4)=4ln(x+4)+4
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031744798283.png)
(x+4).所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745313899.png)
.因为x
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031744985246.png)
(-4,-2).所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745344623.png)
.因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745360492.png)
.所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745375557.png)
.又由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745360492.png)
可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745407631.png)
.所以f(x)在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745422619.png)
上是增函数,在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745453654.png)
上是减函数.所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240317454691536.png)
.所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031744907348.png)
.
(II)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031744689447.png)
的值域为A,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745079442.png)
的值域为B,则由已知,对于任意的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745095585.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745110263.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745126602.png)
,使
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031744892749.png)
得,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745157441.png)
.
由(I)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031744798283.png)
=-1,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745609555.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745641599.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745656747.png)
,
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745672496.png)
,∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745687545.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031744689447.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745672496.png)
上单调递减函数,
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031744689447.png)
的值域为 A=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745765605.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745781933.png)
,
∴(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745797403.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745079442.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745828452.png)
上是减函数,此时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745079442.png)
的值域为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745859785.png)
,
为满足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745157441.png)
,又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745890711.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745906704.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745921680.png)
. 12分
(2)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745937414.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745079442.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745828452.png)
上是单调递增函数,此时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745079442.png)
的值域为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745999782.png)
,为满足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031745157441.png)
,又,∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031746031713.png)
,∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031746046995.png)
,
综上可知b的取值范围是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240317449231363.png)
.