精英家教网 > 高中数学 > 题目详情
以下四个命题中:
①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②若两个随机变量的线性相关性越强,则相关系数的绝对值越接近于1;
③根据散点图求得的回归直线方程可能是没有意义的;
④若某项测量结果ξ服从正态分布N(1,σ2),且P(ξ≤4)=0.9,则P(ξ≤-2)=0.1.
其中真命题的个数为(  )
A、1B、2C、3D、4
考点:命题的真假判断与应用
专题:概率与统计
分析:①这样的抽样是系统抽样,即可判断出正误;
②利用两个随机变量的线性相关性强弱与相关系数的绝对值的关系即可判断出正误;
③只有具有线性相关的两个观测值才能得到具有代表意义的回归直线方程,即可判断出正误;
④利用正态分布的对称性即可判断出正误.
解答: 解:①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是系统抽样,因此不正确;
②若两个随机变量的线性相关性越强,则相关系数的绝对值越接近于1,因此正确;
③只有具有线性相关的两个观测值才能得到具有代表意义的回归直线方程,因此正确;
④利用ξ服从正态分布N(1,σ2),且P(ξ≤4)=0.9,可得P(ξ>4)=0.1,即可得出P(ξ≤-2)=P(ξ>4)=0.1,因此正确.
故选:C.
点评:本题考查了两个随机变量的线性相关性、抽样方法、正态分布的性质,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

2001年至2013年北京市电影放映场次的情况如图所示.下列函数模型中,最不合适近似描述这13年间电影放映场次逐年变化规律的是(  )
A、y=ax2+bx+c
B、y=aex+b
C、y=eax+b
D、y=alnx+b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an+1=3an+k•3n+1(k是与n无关的常数且k≠0),设bn=
an
3n

(1)证明数列{bn}是等差数列;
(2)若数列{an}是单调递减数列,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin(2x-
π
6
)+2sin2(x-
π
12
)(x∈R)
(1)求函数f(x)的单调递增区间;
(2)求函数f(x)取得最大值时的x集合;
(3)函数f(x)的图象可以由函数y=sinx(x∈R)的图象经过怎样的变换得到?

查看答案和解析>>

科目:高中数学 来源: 题型:

若x,y,z∈R,且2x+y+2z=6,则x2+y2+z2的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在等腰三角形ABC中,底边BC=2,
AD
=
DC
AE
=
1
2
EB
,若
BD
AC
=-
1
2
,则
CE
AB
=(  )
A、-
4
3
B、
4
3
C、-
3
2
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=|2x+1|+|x-a|(a∈R).
(1)当a=2时,求不等式f(x)≤4;
(2)当a<-
1
2
时,若存在x≤-
1
2
使得f(x)+x≤3成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
的夹角为120°,且|
a
|=1,|2
a
+
b
|=2
3
,则|
b
|=(  )
A、3
2
B、2
2
C、4
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

对于|q|<1(q为公比)的无穷等比数列{an}(即项数是无穷项),我们定义
lim
n→∞
Sn(其中Sn是数列{an}的前n项的和)为它的各项的和,记为S,即S=
lim
n→∞
Sn=
a1
1-q
,则循环小数0.
7
2
的分数形式是
 

查看答案和解析>>

同步练习册答案