精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥中,已知平面

(I)求证: 平面

(II)求直线与平面所成角的正弦值

【答案】()见解析()

【解析】试题分析:()由线面垂直的性质可得结合已知根据线面垂直的判定定理可得结论;()(I)可得即为直线与平面所成的角,在直角三角形中,可得.

试题解析:() 证明:因为平面 平面,所以,又因为 ,所以平面

() 解:由(I)可得即为直线与平面所成的角,由已知得 ,所以在直角三角形 ,即直线与平面所成的角的正弦值为

【方法点晴】本题主要考查线面垂直的判定定理及线面角的求法,属于中档题. 解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某几何体的三视图如图所示,则该几何体的表面积为( )

A.45
B.
C.
D.60

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区交管部门为了对该地区驾驶员的某项考试成绩进行分析,随机抽取了15分到45分之间的1000名学员的成绩,并根据这1000名驾驶员的成绩画出样本的频率分布直方图(如图),则成绩在[30,35)内的驾驶员人数共有(

A.60
B.180
C.300
D.360

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,为正方体,给出以下五个结论:

平面

⊥平面

与底面所成角的正切值是

二面角的正切值是

过点且与异面直线 均成70°角的直线有4条.

其中,所有正确结论的序号为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】证明:△ABC是等边三角形的充要条件是a2+b2+c2=ab+bc+ac(其中a,b,c△ABC的三条边).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C的参数方程为: (φ为参数),直线l的极坐标方程为ρ(cosθ+sinθ)=4.
(1)求曲线C的普通方程和直线l的直角坐标方程;
(2)若点P在曲线C上,点Q在直线l上,求线段PQ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线 与抛物线交于 两点,记抛物线在 两点处的切线 的交点为

(I)求证:

(II)求点的坐标( 表示);

)若,求的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面内圆心为的圆的方程为,点是圆上的动点,点是平面内任意一点,若线段的垂直平分线交直线于点,则点的轨迹可能是_________.(请将下列符合条件的序号都填入横线上)

①椭圆;②双曲线;③抛物线;④圆;⑤直线;⑥一个点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= 若a,b,c,d各不相同,且f(a)=f(b)=f(c)=f(d),则abcd的取值范围是(
A.(24,25)
B.[16,25)
C.(1,25)
D.(0,25]

查看答案和解析>>

同步练习册答案