精英家教网 > 高中数学 > 题目详情

在边长为a的正三角形铁皮的三个角切去三个全等的四边形,再把它的边沿虚线折起(如图),做成一个无盖的正三角形底铁皮箱,当箱底边长为多少时,箱子容积最大?最大容积是多少?

当箱子底边长为a时,箱子容积最大,最大值为a3.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图甲,在平面四边形ABCD中,已知,,现将四边形ABCD沿BD折起,使平面ABD平面BDC(如图乙),设点E,F分别为棱AC,AD的中点.

(1)求证:DC平面ABC;     
(2)设,求三棱锥A-BFE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为直角梯形,且,平面底面的中点,是棱的中点,.

(1)求证:平面
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱ABCA′B′C′,∠BAC=90°,AB=AC=,AA′=1,点M,N分别为
A′B和B′C′的中点.

(1)证明:MN∥平面A′ACC′;
(2)求三棱锥A′MNC的体积.(锥体体积公式V=Sh,其中S为底面面积,h为高)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图甲,是边长为6的等边三角形,分别为靠近的三等分点,点为边边的中点,线段交线段于点.将沿翻折,使平面平面,连接,形成如图乙所示的几何体.

(1)求证:平面
(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,点E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使平面ABEF⊥平面EFDC,设AD中点为P.

(1)当E为BC中点时,求证:CP∥平面ABEF;
(2)设BE=x,问当x为何值时,三棱锥ACDF的体积有最大值?并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,矩形所在的平面和平面互相垂直,等腰梯形中,=2,分别为的中点,为底面的重心.

(1)求证:平面平面
(2)求证: ∥平面
(3)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正三棱锥V-ABC的正视图、侧视图和俯视图如图所示.

(1)画出该三棱锥的直观图.
(2)求出侧视图的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱ABC-A1B1C1中,C1C⊥底面ABC,AC=BC=CC1=2,AC⊥BC,点D是AB的中点.

(1)求证:AC1∥平面CDB1
(2)求三棱锥D-B1C1C的体积.

查看答案和解析>>

同步练习册答案