精英家教网 > 高中数学 > 题目详情
12.设数列{an}满足a4=$\frac{1}{8}$,且对任意的正整数n,满足an+2-an≤3n,an+4-an≥10×3n,则a2016=$\frac{8{1}^{504}-80}{8}$.

分析 对任意的正整数n,满足an+2-an≤3n,可得an+4-an+2≤3n+2,an+4-an≤10×3n,又an+4-an≥10×3n,则an+4-an=10×3n,利用“累加求和”方法即可得出.

解答 解:∵对任意的正整数n,满足an+2-an≤3n,∴an+4-an+2≤3n+2
∴an+4-an≤10×3n
又an+4-an≥10×3n,则an+4-an=10×3n
∴a8-a4=10×34,a12-a8=10×38,…,a2016-a2012=10×32012
∴a2016-a4=10×(34+38+…+32012)=10×$\frac{81(8{1}^{503}-1)}{81-1}$=$\frac{81(8{1}^{503}-1)}{8}$.
∴a2016=a4+$\frac{81(8{1}^{503}-1)}{8}$=$\frac{8{1}^{504}-80}{8}$.
故答案为:$\frac{8{1}^{504}-80}{8}$.

点评 本题考查了数列递推关系、“累加求和”方法、不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知$A=\left\{{x\left|{{3^x}<1}\right.}\right\},B=\left\{{x\left|{y=\sqrt{x+3}}\right.}\right\}$,则A∩B=(  )
A.[-3,0)B.[-3,0]C.(0,+∞)D.[-3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)(x∈R)的图象上任一点(x0,y0)处的切线方程为y-y0=(x0-2)(x02-1)(x-x0),那么函数f(x)的单调递减区间是(  )
A.[-1,+∞)B.(-∞,2]C.(-∞,-1)和(1,2)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.《中华人民共和国个人所得税法》规定:2011年9月1 日开始个人所得税起征点由原来的2000元提高到3500元.也就是说原来月收人超过2000元的部分需要纳税,2011年9月1日开始超过3500元的部分需要纳税,若税法修改前后超过部分的税率相同.按如表分段计税
级数全月应纳税所得额税率(%)
1不超过1500元的部分3
2超过1500不超过4500元的部分10
3超过4500不超过9000元的部分20
某职工2011年5月交纳个人所得税295元,在收人不变的情况下,2011年10月该职工需交纳个人所得税145元.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.人耳的听力情况可以用电子测听器检测,正常人听力的等级为0-25db(分贝),并规定测试值在区间(0,5]为非常优秀,测试值在区间(5,10]为优秀,某班50名同学都进行了听力测试,所得测试值制成频率分布直方图:
(Ⅰ)现从听力等级为(0,10]的同学中任意抽取出4人,记听力非常优秀的同学人数X,求X的分布列与数学期望.
(Ⅱ)在(Ⅰ)中抽出的4人中任选一人参加一个更高级别的听力测试,测试规则如下:四个音叉的发声情况不同,由强到弱的次序分别为1,2,3,4,测试前将音叉随机排列,被测试的同学依次听完后给四个音叉按发音的强弱标出一组序号a1,a2,a3,a4(其中a1,a2,a3,a4为1,2,3,4的一个排列),若Y为两次排序偏离程度的一种描述,Y=|1-a1|+|2-a2|+|3-a3|+|4-a4|,求Y≤2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知斜四棱柱平面ABCD-A1B1C1D1的各棱长均为2,∠A1AD=60°,∠BAD=90°,平面A1ADD1⊥平面ABCD,
(1)求直线BD1与平面ABCD所成的角的正弦值;
(2)若E为CC1中点,在线段AD上是否存在一点M,使得MB1⊥平面BED1,若存在求出AM长度,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C所对的边分别为a,b,c,且$\frac{sinC}{sinA•cosB}=\frac{2c}{a}$.
(1)求B.
(2)若cosA=$\frac{1}{4}$,求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.数列{an}的前n项和为Sn,a1=2,a2=7,an=3an-1+2an-2,n∈N*,n≥3.
(1)求证:a2017一定是奇数;
(2)①求证:4Sn+3<$\frac{17}{3}$an(n≥2,n∈N*);
②求证:|an+1-$\frac{{{a}_{n}}^{2}}{{a}_{n-1}}$|≤$\frac{1}{2}$(n≥2,n∈N)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点(1,$\frac{3}{2}$),且离心率e=$\frac{1}{2}$
(Ⅰ)求椭圆E的方程;
(Ⅱ)设椭圆E的右顶点为A,若直线l:y=kx+m与椭圆E相交于M、N两点(异于A点),且满足MA⊥NA,试证明直线l经过定点,并求出该定点的坐标.

查看答案和解析>>

同步练习册答案