精英家教网 > 高中数学 > 题目详情

【题目】已知奇函数
(1)在直角坐标系中画出y=f(x)的图象,并指出函数的单调区间;
(2)若函数f(x)在区间[﹣1,a﹣2]上单调递增,试确定a的取值范围.

【答案】
(1)解:如图:单调区间为:(﹣∞,﹣1),(﹣1,1),(1,+∞)


(2)解:由函数图象可知,函数在(﹣1,1)上递增,

要使函数在区间[﹣1,a﹣2]上单调递增,

∴﹣1<a﹣2≤1,

解得1<a≤3,

a的取值范围为(1,3]


【解析】(1)根据分段函数的特点,画图即可,由图象可得函数的单调区间,(2)结合图象以及在区间[﹣1,a﹣2]上单调递增,即可求出a的取值范围.
【考点精析】利用函数的单调性对题目进行判断即可得到答案,需要熟知注意:函数的单调性是函数的局部性质;函数的单调性还有单调不增,和单调不减两种.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别,设点,=2.

(1)求椭圆C的方程;

(2)已知四边形MNPQ的四个顶点均在曲线C上,且MQ∥NP,MQ⊥x轴,若直线MN和直线QP交于点S(4,0).判断四边形MNPQ两条对角线的交点是否为定点?若是,求出定点坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四种说法: ①函数y=ax(a>0且a≠1)与函数y=logaax(a>0且a≠1)的定义域相同;
②函数y=x3与y=3x的值域相同;
③函数y= + 与y= 都是奇函数;
④函数y=(x﹣1)2与y=2x1在区间[0,+∞)上都是增函数.
其中正确的序号是(把你认为正确叙述的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且满足;数列的前项和为,且满足 .

(1)求数列的通项公式;

(2)是否存在正整数,使得恰为数列中的一项?若存在,求所有满足要求的;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

(1)当时,解不等式

(2)若关于的方程的解集中恰有一个元素,求的取值范围;

(3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,长方体的底面是边长为3的正方形,且

(Ⅰ)求证:平面平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某城市气象部门的数据中,随机抽取了100天的空气质量指数的监测数据如表:

空气质量指数t

(0,50]

(50,100]

(100,150]

(150,200]

(200,300]

质量等级

轻微污染

轻度污染

中度污染

严重污染

天数K

5

23

22

25

15

10

(1)在该城市各医院每天收治上呼吸道病症总人数y与当天的空气质量t(t取整数)存在如下关系y=,且当t>300时,y>500估计在某一医院收治此类病症人数超过200人的概率;

(2)若在(1)中,当t>300时,y与t的关系拟合于曲线,现已取出了10对样本数据(ti,yi)(i=1,2,3,…,10),且,求拟合曲线方程.

(附:线性回归方程=a+bx中,b=,a=﹣b

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(1,﹣1),B(4,0),C(2,2),平面区域D是所有满足 (1<λ≤a,1<μ≤b)的点P(x,y)组成的区域.若区域D的面积为4,则ab﹣a﹣b=(
A.﹣1
B.﹣
C.
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x(1+m|x|),关于x的不等式f(x)>f(x+m)的解集记为T,若区间[﹣ ]T,则实数m的取值范围是(
A.( ,0)
B.( ,0)
C.(﹣∞,
D.( ,0)∪(0,

查看答案和解析>>

同步练习册答案