精英家教网 > 高中数学 > 题目详情

【题目】双曲线的左、右焦点分别是,抛物线的焦点与点重合,点是抛物线与双曲线的一个交点,如图所示.

(1)求双曲线及抛物线的标准方程;

(2)设直线与双曲线的过一、三象限的渐近线平行,且交抛物线于两点,交双曲线于点若点是线段的中点,求直线的方程.

【答案】(1)(2)

【解析】分析:(1)先根据M坐标求p,得焦点坐标,再将M坐标代入双曲线方程,联立方程组解得a,b,(2)先求渐近线方程,设直线方程,分别与抛物线方程、双曲线方程联立方程组,利用韦达定理以及中点坐标公式列方程,解得直线的方程.

详解:

(1) 代入

解得

因为焦点为

所以,双曲线的焦点在轴上

代入

所以 (舍去)

所以

所以她物线的标准方程为

曲线的标准方程为

(2)渐近线

设直线

别消去

代入

,解得,经验证,不合题意,故舍去.

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在第二届乌镇互联网大会中, 为了提高安保的级别同时又为了方便接待,现将其中的五个参会国的人员安排酒店住宿,这五个参会国要在三家酒店选择一家,且每家酒店至少有一个参会国入住,则这样的安排方法共有

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲题型:给出如图数阵表格形式,表格内是按某种规律排列成的有限个正整数.

(1)记第一行的自左至右构成数列的前项和,试求;

(2)记为第列第行交点的数字,观察数阵请写出表达式,若,试求出的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学举行了一次数学基础知识竞赛活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为)进行统计.按照的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在的数据).

1)求样本容量和频率分布直方图中的的值;

2)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生参加市级数学基础知识竞赛,求所抽取的2名学生中恰有一人得分在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若某产品的直径长与标准值的差的绝对值不超过时,则视为合格品,否则视为不合格品.在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品.计算这50件不合格品的直径长与标准值的差(单位:)将所得数据分组,得到如下频率分布表:

1)将上面表格中缺少的数据填充完整;

2)估计该厂生产的此种产品中,不合格的直径长与标准值的差落在区间内的概率

3)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品,据此估算这批产品中的合格品的件数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校计划面向高一年级名学生开设校本选修课程,为确保工作的顺利实施,先按性别进行分层抽样,抽取了名学生对社会科学类,自然科学类这两大类校本选修课程进行选课意向调查,其中男生有人.在这名学生中选择社会科学类的男生、女生均为人.

(Ⅰ)分别计算抽取的样本中男生及女生选择社会科学类的频率,并以统计的频率作为概率,估计实际选课中选择社会科学类学生数;

(Ⅱ)根据抽取的名学生的调查结果,完成下列列联表.并判断能否在犯错误的概率不超过的前提下认为科类的选择与性别有关?

选择自然科学类

选择社会科学类

合计

男生

女生

合计

附: ,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.

(1)当m=-1时,求AB

(2)若AB,求实数m的取值范围;

(3)若AB,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)若函数为增函数,求实数的值;

2)若函数为偶函数,对于任意,任意,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为招聘新员工设计了一个面试方案:应聘者从道备选题中一次性随机抽取道题,按照题目要求独立完成规定:至少正确完成其中道题的便可通过.已知道备选题中应聘者甲有道题能正确完成,道题不能完成;应聘者乙每题正确完成的概率都是,且每题正确完成与否互不影响

1)分别求甲、乙两人正确完成面试题数的分布列,并计算其数学期望;

2)请分析比较甲、乙两人谁的面试通过的可能性大?

查看答案和解析>>

同步练习册答案