精英家教网 > 高中数学 > 题目详情

【题目】十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康。经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加。为了更好的制定2019年关于加快提升农民年收人力争早日脱贫的工作计划,该地扶贫办统计了2018年50位农民的年收人并制成如下频率分布直方图:

(1)根据频率分布直方图,估计50位农民的年平均收入(单位:千元)(同一组数据用该组数据区间的中点值表示);

(2)由频率分布直方图,可以认为该贫困地区农民年收入服从正态分布,其中近似为年平均收入,近似为样本方差,经计算得.利用该正态分布,求:

(i)在2019年脱贫攻坚工作中,若使该地区约有占总农民人数的的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?

(ii)为了调研“精准扶贫,不落一人”的政策要求落实情况, 扶贫办随机走访了1000位农民。若每个农民的年收人相互独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?

附:参考数据与公式,若,则①;②;③.

【答案】(1)17.40万元 (2) (i) 14.77千元 (ii)978

【解析】

1)由每一个小矩形中点的横坐标乘以频率作和得答案;

2)由题意,XN17.406.92),.

i)由已知数据求得Pxμ﹣σ),进一步求得μ﹣σ得答案;

(ⅱ)求出PX12.14),得每个农民年收入不少于12.14千元的事件概率为0.9773,设1000个农民年收入不少于12.14千元的人数为ξ,则ξB103p),求出恰好有k个农民的年收入不少于12.14千元的事件概率,由1,得k1001p,结合1001p978.233,对k分类分析得答案.

解:(1)千元.

(2)有题意,.

(i)

时,满足题意

即最低年收入大约为14.77千元

(ii)由,得

每个农民的年收入不少于12.14千元的事件概率为0.9773,

记1000个农民的年收入不少于12.14千元的人数为,则,其中

于是恰好有个农民的年收入不少于12.14千元的事件概率是

从而由,得

,所以,

时,

时,

由此可知,在所走访的1000位农民中,年收入不少于12.14千元的人数最有可能是978

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知正实数,函数 .

(1)讨论函数的单调性;

(2)若内有解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的内角的对边长分别为,设的面积,满足,则的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某运动员每次投篮命中的概率低于,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生09之间取整数值的随机数,指定1234表示命中,567890表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

据此估计,该运动员三次投篮恰有两次命中的概率为(

A.0.35B.0.25C.0.20D.0.15

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点作一直线与双曲线相交于两点,若中点,则( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南宋数学家杨辉在所著的《详解九章算法》一书中用如图所示的三角形解释二项展开式的系数规律,去掉所有为1的项,依次构成2334645101056…,则此数列的前50项和为(

A.2025B.3052C.3053D.3049

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,,点分别为棱的中点.

(Ⅰ)求证:∥平面

()求证:平面平面;

()在线段上是否存在一点,使得直线与平面所成的角为300?如果存在,求出线段的长;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列满足.

(1)求的通项公式;

(2)设等比数列满足,问: 与数列的第几项相等?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数集合 ,其中为虚数单位,若复数,则对应的点在复平面内所形成图形的面积为________

查看答案和解析>>

同步练习册答案