精英家教网 > 高中数学 > 题目详情
3.若x,y满足$\left\{\begin{array}{l}{x+y≤4}\\{x-2y≥0}\\{x+2y≥4}\end{array}\right.$,则z=2x+y的最小值是(  )
A.$\frac{20}{3}$B.8C.$\frac{14}{3}$D.5

分析 画出满足约束条件的可行域,利用目标函数的几何意义,判断目标函数经过的点,可得最优解.

解答 解:满足约束条件$\left\{\begin{array}{l}{x+y≤4}\\{x-2y≥0}\\{x+2y≥4}\end{array}\right.$的可行域如下图所示:
∵目标函数z=2x+y,平移目标函数,当目标函数经过可行域的点A时,取得最小值.$\left\{\begin{array}{l}{x-2y=0}\\{x+2y=4}\end{array}\right.$,可得A(2,1)
故在A(2,1)处目标函数达到最小值:5.
故选:D.

点评 本题考查的知识点是简单线性规划,掌握目标函数的几何意义,熟练掌握其解答过程和步骤是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.表面积为20π的球面上有四点S、A、B、C,且△ABC是边长为2$\sqrt{3}$的等边三角形,若平面SAB⊥平面ABC,则三棱锥S-ABC体积的最大值是3$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.为了得到函数y=1-2sin2(x-$\frac{π}{12}$)的图象,可以将函数y=sin2x的图象(  )
A.向左平移$\frac{π}{3}$个单位长度B.向右平移$\frac{π}{6}$个单位长度
C.向右平移$\frac{π}{3}$个单位长度D.向左平移$\frac{π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,底面ABCD是矩形,点E、F分别是棱PC和PD的中点.
(1)求证:EF∥平面PAB;
(2)若AP=AD,且平面PAD⊥平面ABCD,证明:AF⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.现在人们都注重锻炼身体,骑车或步行上下班的人越来越多,某公司甲、乙两人每天可采用步行,骑车,开车三种方式上下班.步行到公司所用时间为1小时,骑车到公司所用时间为0.5小时,开车到公司所用时间为0.1小时.甲、乙两人上下班方式互不影响.设甲、乙步行的概率分别为$\frac{1}{4},\frac{1}{2}$;骑车概率分别为$\frac{1}{2},\frac{1}{4}$.
(1)求甲、乙两人到公司所用时间相同的概率;
(2)设甲、乙两人到公司所用时间和为随机变量ξ,求ξ的分布列及数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.正四棱柱ABCD-A1B1C1D1中,AA1=2AB,则AD1与平面BB1D1所成角的正弦值为(  )
A.$\frac{\sqrt{10}}{10}$B.$\frac{3\sqrt{10}}{10}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知a>0,b>0,且4a+b-ab=0,则 a+b的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.圆x2+y2-4x+6y=0和圆x2+y2-6x=0交于A,B两点,则直线AB的方程是(  )
A.x+3y=0B.3x-y=0C.3x-y-9=0D.3x+y+9=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q(单位:元/10kg)与上市时间t(单位:元)的数据如表:
时间t50110250
种植成本Q150108150
(1)根据上表数据判断,函数Q=at+b,Q=at2+bt+c,Q=a•bt,Q=a•logbt中哪一个适宜作为描述西红柿种植成本Q与上市时间t的变化关系?简要说明理由;
(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.

查看答案和解析>>

同步练习册答案