精英家教网 > 高中数学 > 题目详情

【题目】如图,在正三棱柱ABC-A1B1C1中,AB=3AA1=4MAA1的中点,PBC上的一点,且由P沿棱柱侧面经过棱CC1M的最短路线长为,设这条最短路线与CC1的交点为N.求:

1)该三棱柱的侧面展开图的对角线的长;

2PCNC的长.

【答案】(1) (2) PC=2, NC=

【解析】

1)由题意结合展开图的特征求解其对角线长即可;

2)首先画出其展开图,然后结合展开图的几何特征即可求得PCNC的长.

1)正三棱柱ABC-A1B1C1的侧面展开图是一个长为9,宽为4的矩形,

其对角线的长为

2

如图所示,将平面BB1C1C绕棱CC1旋转120°使其与侧面AA1C1C在同一平面上,点P运动到点P1的位置,连接MP1,则MP1就是由点P沿棱柱侧面经过棱CC1到点M的最短路线.

PC=x,则P1C=x

RtMAP1中,

在勾股定理得(3+x)2+22=29

求得x=2

PC=P1C=2

=

NC=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,分别是的中点.

(1)求异面直线所成角的大小;

(2)棱上是否存在点,使平面?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,正确的为________(正确序号全部填上)

1)空间中,一个角的两边与另一个角的两边分别平行,则这两个角相等或互补;

2)一个二面角的两个半平面与另一个二面角的两个半平面分别垂直,则这两个二面角相等或互补;

3)直线为异面直线,所成角的大小为,过空间一点作直线,使l与直线及直线都成相等的角,这样的直线可作3条;

4)直线与平面相交,过直线可作唯一的平面与平面垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某地区某种农产品的年产量(单位:吨)对价格(单位:千元/吨)和利润的影响,对近五年该农产品的年产量和价格统计如下表:

1

2

3

4

5

8

6

5

4

2

已知具有线性相关关系.

(1)求关于的线性回归方程

(2)若每吨该农产品的成本为2.2千元,假设该农产品可全部卖出,预测当年产量为多少吨时,年利润取到最大值?

参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列同时满足条件:①存在互异的使得为常数);

②当时,对任意都有,则称数列为双底数列.

(1)判断以下数列是否为双底数列(只需写出结论不必证明);

; ②; ③

(2)设若数列是双底数列,求实数的值以及数列的前项和

(3)设,是否存在整数,使得数列为双底数列?若存在,求出所有的的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是两条不同的直线,是三个不同的平面,给出下列四个命题:

①若,则

②若,则

③若,则

④若,则

其中正确命题的序号是(

A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年,在《我是演说家》第四季这档节目中,英国华威大学留学生游斯彬的“数学之美”的演讲视频在微信朋友圈不断被转发,他的视角独特,语言幽默,给观众留下了深刻的印象.某机构为了了解观众对该演讲的喜爱程度,随机调查了观看了该演讲的140名观众,得到如下的列联表:(单位:名)

总计

喜爱

40

60

100

不喜爱

20

20

40

总计

60

80

140

(1)根据以上列联表,问能否在犯错误的概率不超过0.05的前提下认为观众性别与喜爱该演讲有关.(精确到0.001)

(2)从这60名男观众中按对该演讲是否喜爱采取分层抽样,抽取一个容量为6的样本,然后随机选取两名作跟踪调查,求选到的两名观众都喜爱该演讲的概率.

附:临界值表

0.10

0.05

0.025

0.010

0.005

2.705

3.841

5.024

6.635

7.879

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为1,线段上有两个动点,且,现有如下四个结论:

平面

三棱锥的体积为定值;异面直线所成的角为定值,

其中正确结论的序号是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:

(1) 证明:数列是等比数列;

(2) 求使不等式成立的所有正整数m、n的值;

(3) 如果常数0 < t < 3,对于任意的正整数k,都有成立,求t的取值范围.

查看答案和解析>>

同步练习册答案