精英家教网 > 高中数学 > 题目详情

【题目】某快递网点收取快递费用的标准是重量不超过的包裹收费10元,重量超过的包裹,除收费10元之外,超过的部分,每超出(不足,按计算)需要再收费5元.该公司近60天每天揽件数量的频率分布直方图如下图所示(同一组数据用该区间的中点值作代表).

1)求这60天每天包裹数量的平均数和中位数;

2)该快递网点负责人从收取的每件快递的费用中抽取5元作为工作人员的工资和网点的利润,剩余的作为其他费用.已知该网点有工作人员3人,每人每天工资100元,以样本估计总体,试估计该网点每天的利润有多少元?

【答案】1)平均数和中位数都为260件; 21000元.

【解析】

1)根据频率分布直方图,求出每组的频率,即可求出平均数,确定中位数所在的组,然后根据中位数左右两边图形面积各占0.5,即可求出中位数;

2)由(1)每天包裹数量的平均数求出网点平均总收入,扣除工作人员工资即为所求.

1)每天包裹数量的平均数为

的频率为的频率为

中位数为

所以该网点每天包裹的平均数和中位数都为260件.

2)由(1)可知平均每天的揽件数为260

利润为元,

所以该网点平均每天的利润有1000元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数fx)的定义域为R,如果存在函数gx),使得fxgx)对于一切实数x都成立,那么称gx)为函数fx)的一个承托函数.已知函数fx=ax2+bx+c的图象经过点(-10).

1)若a=1b=2.写出函数fx)的一个承托函数(结论不要求证明);

2)判断是否存在常数abc,使得y=x为函数fx)的一个承托函数,且fx)为函数的一个承托函数?若存在,求出abc的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),曲线的参数方程为为参数).

(1)将 的方程化为普通方程,并说明它们分别表示什么曲线?

(2)以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,已知直线的极坐标方程为.若上的点对应的参数为,点上,点的中点,求点到直线距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设有一组圆.下列四个命题正确的是( )

A. 存在,使圆与轴相切

B. 存在一条直线与所有的圆均相交

C. 存在一条直线与所有的圆均不相交

D. 所有的圆均不经过原点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有编号为1,2,3,…,100的100把锁,利用中国剩余定理的原理设置开锁密码,规则为:将锁的编号依次除以3,5,7所得的三个余数作为该锁的开锁密码,这样,每把锁都有一个三位数字的开锁密码.例如,编号为52的锁所对应的开锁密码是123,开锁密码为232所对应的锁的编号是23.若一把锁的开锁密码为203,则这把锁的编号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),曲线的参数方程为为参数),以该直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)分别求曲线的极坐标方程和曲线的直角坐标方程;

(Ⅱ)设直线交曲线两点,交曲线两点,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020122日,国新办发布消息:新型冠状病毒来源于武汉一家海鲜市场非法销售的野生动.专家通过全基因组比对发现此病毒与2003年的非典冠状病毒以及此后的中东呼吸综合征冠状病毒,分别达到70%40%的序列相似性.这种新型冠状病毒对人们的健康生命带来了严重威胁因此,某生物疫苗研究所加紧对新型冠状病毒疫苗进行实验,并将某一型号疫苗用在动物小白鼠身上进行科研和临床实验,得到统计数据如下:

未感染病毒

感染病毒

总计

未注射疫苗

20

注射疫苗

30

总计

50

50

100

现从所有试验小白鼠中任取一只,取到“注射疫苗”小白鼠的概率为.

1)求列联表中的数据的值;

2)能否有99.9%把握认为注射此种疫苗对预防新型冠状病毒有效?

附:.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形垂直于直角梯形中点,.

1)求证:∥平面

2)线段上是否存在点,使与平面所成角的正切值为?若存在,请求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过双曲线的右支上一点,分别向圆和圆作切线,切点分别为,则的最小值为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案