精英家教网 > 高中数学 > 题目详情

已知各项均为正数的数列{}满足-2=0,n∈N﹡,且是a2,a4的等差中项.
(1)求数列{}的通项公式;
(2)若=b1+b2+…+,求的值.

(1);(2)

解析试题分析:(1)将-2=0分解因式得,因为数列的各项均为正数, ,数列是以2为公比的等比数列,再根据是a2,a4的等差中项,列关系可求出通项公式;(2)由(1)得,计算出,利用错位相减法求解.
试题解析:(1)        1分
∵数列的各项均为正数,           2分
,∴数列是以2为公比的等比数列             3分
是a2,a4的等差中项,
,∴数列的通项公式为          6分
(2)由(1)及,得             7分


       12分
考点:等差中项、等比数列、对数式的计算、错位相减法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知a,b是不相等的正数,在a,b之间分别插入m个正数a1,a2, ,am和正数b1,b2, ,
bm,使a,a1,a2, ,am,b是等差数列,a,b1,b2, ,bm,b是等比数列.
(1)若m=5,,求的值;
(2)若b=λa(λ∈N*,λ≥2),如果存在n (n∈N*,6≤n≤m)使得an-5=bn,求λ的最小值及此时m的值;
(3)求证:an>bn(n∈N*,n≤m).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列{an}(n∈N)中,a1=0,当3an<n2时,an+1=n2,当3an>n2时,an+1=3an.求a2,a3,a4,a5,猜测数列的通项an并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线,过上一点作一斜率为的直线交曲线于另一点,点列的横坐标构成数列,其中.
(1)求的关系式;
(2)令,求证:数列是等比数列;
(3)若为非零整数,),试确定的值,使得对任意,都有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2013年我国汽车拥有量已超过2亿(目前只有中国和美国超过2亿),为了控制汽车尾气对环境的污染,国家鼓励和补贴购买小排量汽车的消费者,同时在部分地区采取对新车限量上号.某市采取对新车限量上号政策,已知2013年年初汽车拥有量为=100万辆),第年(2013年为第1年,2014年为第2年,依次类推)年初的拥有量记为,该年的增长量的乘积成正比,比例系数为其中=200万.
(1)证明:
(2)用表示;并说明该市汽车总拥有量是否能控制在200万辆内.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等差数列的前项和为,满足:.递增的等比数列项和为,满足:
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列,均有成立,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列
(1)求证:为等比数列,并求出通项公式
(2)记数列 的前项和为,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列是等差数列,且;又若是各项为正数的等比数列,且满足,其前项和为.
(1)分别求数列的通项公式
(2)设数列的前项和为,求的表达式,并求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列和公比为的等比数列满足:
(Ⅰ)求数列的通项公式;
(Ⅱ)若数列的前项和为,且对任意均有成立,试求实数的取值范围.

查看答案和解析>>

同步练习册答案