精英家教网 > 高中数学 > 题目详情
椭圆mx2+y2=1的焦点在y轴上,长轴长是短轴长的3倍,则m=    .
9
椭圆标准方程为+y2=1,
由题意知3=1,
∴m=9.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:+=1(a>b>0)的焦距为4,且过点P(,).
(1)求椭圆C的方程;
(2)设Q(x0,y0)(x0y0≠0)为椭圆C上一点.过点Q作x轴的垂线,垂足为E.取点A(0,2),连接AE,过点A作AE的垂线交x轴于点D.点G是点D关于y轴的对称点,作直线QG,问这样作出的直线QG是否与椭圆C一定有唯一的公共点?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系xOy中,已知椭圆的左焦点为F,直线x-y-1=0,x-y+1=0与椭圆分别相交于点A,B,C,D,则AF+BF+CF+DF=     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的左、右焦点坐标分别是(-,0),(,0),离心率是.直线y=t与椭圆C交于不同的两点M,N,以线段MN为直径作圆P,圆心为P.
(1)求椭圆C的方程;
(2)若圆P与x轴相切,求圆心P的坐标;
(3)设Q(x,y)是圆P上的动点,当t变化时,求y的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆C1:+=1(a>b>0)与双曲线C2:x2-=1有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点.若C1恰好将线段AB三等分,则(  )
A.a2=B.a2=13
C.b2=D.b2=2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆+=1上有两个动点P、Q,E(3,0),EP⊥EQ,则·的最小值为(  )
A.6B.3-C.9D.12-6

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的焦点分别为,点在椭圆上,如果线段的中点在轴上,那么               

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=sin+cosg(x)=2sin2.
(1)若α是第一象限角,且f(α)=,求g(α)的值;
(2)求使f(x)≥g(x)成立的x的取值集合.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知F1、F2是椭圆C:=1(a>b>0)的两个焦点,P为椭圆C上一点,且.若△PF1F2的面积为9,则b=________.

查看答案和解析>>

同步练习册答案