精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 )的左右焦点分别为 ,离心率为,点在椭圆上, ,过与坐标轴不垂直的直线与椭圆交于 两点, 的中点.

(Ⅰ)求椭圆的方程;

(Ⅱ)已知点,且,求直线所在的直线方程.

【答案】(Ⅰ); (Ⅱ)的直线方程为.

【解析】试题分析:

(1)利用题意结合余弦定理首先求得a,c的值,然后利用a,b,c的关系求得b的值即可得到椭圆的标准方程;

(2)直线的斜率存在,利用点斜式设出直线方程,将其与椭圆方程联立,利用题意结合根与系数的关系得到关于实数k的方程,求解方程即可得到直线的斜率,然后求解直线方程即可.

试题解析:

(Ⅰ)由,得

因为

由余弦定理得

解得

∴椭圆的方程为

(Ⅱ)因为直线的斜率存在,设直线方程为

联立整理得

由韦达定理知

此时,又,则

,∴,得到

的直线方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知分别是椭圆 的左、右焦点,点是椭圆上一点,且.

(1)求椭圆的方程;

(2)设直线与椭圆相交于两点,若,其中为坐标原点,判断到直线的距离是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求曲线在点处的切线方程;

(2)若关于的不等式恒成立,求整数的最小值;

(3)若正实数满足,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的方程为,双曲线的一条渐近线与轴所成的夹角为,且双曲线的焦距为.

(1)求椭圆的方程;

(2)设分别为椭圆的左,右焦点,过作直线 (与轴不重合)交椭圆于 两点,线段的中点为,记直线的斜率为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(数学文卷·2017届湖北省黄冈市高三上学期期末考试第16题) “中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”. “中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列,则此数列的项数为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察图中各正方形图案,每条边上有an个圆点,第an个图案中圆点的个数是an,按此规律推断出所有圆点总和Snn的关系式为(  )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用随机模拟方法求函数 x轴和直线x=1围成的图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数y=f(x)在区间[0,1]上的图象是连续不断的一条曲线,且恒有0f(x)1,可以用随机模拟方法近似计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S.先产生两组(每组N)0~1区间上的均匀随机数x1,x2,…,xNy1,y2,…,yN,由此得到N个点(xi,yi)(i=1,2,…,N).再数出其中满足yif(xi)(i=1,2,…,N)的点数N1,那么由随机模拟方法可得S的近似值为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求在区间上的最大值和最小值;

(2)若在区间上,函数的图像恒在直线下方,求的取值范围.

查看答案和解析>>

同步练习册答案