精英家教网 > 高中数学 > 题目详情
2.设f(x)是定义在R上的偶函数f(x)+f(2-x)=0.当x∈[0,1]时f(x)=x2-1,若关于x的方程f(x)-kx=0恰有三个不同的实数解,则正实数k的取值范围是(  )
A.(5-2$\sqrt{6}$,4-$\sqrt{13}$)B.(8-2$\sqrt{15}$,4-2$\sqrt{3}$)C.(5-2$\sqrt{6}$,4-2$\sqrt{3}$)D.(8-2$\sqrt{15}$,4-$\sqrt{13}$)

分析 根据函数奇偶性和对称性求出函数的周期,以及函数的解析式,利用函数与方程之间的关系,转化为函数f(x)与y=kx有三个不同的交点,利用数形结合,以及直线和抛物线相切的等价条件,利用判别式△=0,进行求解即可.

解答 解:∵f(x)是定义在R上的偶函数f(x)+f(2-x)=0.
∴f(x)=-f(2-x)=-f(x-2),
即f(x+2)=-f(x),
则f(x+4)=-f(x+2)=f(x),
即函数的周期是4的周期函数,
若x∈[-1,0]时,则-x∈[0,1]时,此时f(-x)=x2-1=f(x),
即f(x)=x2-1,x∈[-1,0],
综上f(x)=x2-1,x∈[-1,1],
若x∈[-2,-1]时,则x+2∈[0,1],
则由f(x+2)=-f(x),得f(x)=-f(x+2)=-[(x+2)2-1]=1-(x+2)2,x∈[-2,-1]
若x∈[1,2]时,则-x∈[-2,-1]时,
则f(-x)=1-(-x+2)2=1-(x-2)2=f(x),
即f(x)=1-(x-2)2,x∈[1,2],
即函数在一个周期[-2,2]上的解析式为f(x)=$\left\{\begin{array}{l}{1-(x+2)^{2},}&{x∈[-2,-1)}\\{{x}^{2}-1,}&{x∈[-1,1]}\\{1-(x-2)^{2},}&{x∈(1,2]}\end{array}\right.$,

若关于x的方程f(x)-kx=0恰有三个不同的实数解,
等价为f(x)=kx=0恰有三个不同的实数解,
即函数f(x)与y=kx有三个不同的交点,
作出函数f(x)和y=kx的图象如图:
当x∈[1,2]时,由f(x)=1-(x-2)2=kx,得x2+(k-4)x+3=0,
由判别式△=(k-4)2-12=0得k-4=±2$\sqrt{3}$,即k=4±2$\sqrt{3}$,
由1<$-\frac{k-4}{2}$<2,解得0<k<6
则k=4-2$\sqrt{3}$,此时两个函数有2个交点.
当x∈[-4,-3]时,x+4∈[0,1]时,
则f(x)=f(x+4)=(x+4)2-1,x∈[-4,-3],
此时当f(x)与y=kx相切时,即(x+4)2-1=kx,
即x2+(8-k)x+15=0,
判别式△=(8-k)2-4×15=0得k-8=±2$\sqrt{15}$,即k=8±2$\sqrt{15}$,
由-4<-$\frac{8-k}{2}$<-3,得0<k<2,
即k=8-2$\sqrt{15}$,此时两个函数有4个交点.
故若关于x的方程f(x)-kx=0恰有三个不同的实数解,则正实数k满足8-2$\sqrt{15}$<k<4-2$\sqrt{3}$,
故选:B

点评 本题主要考查函数与方程的应用,根据函数奇偶性和对称性的关系求出函数的周期性和解析式,利用函数与方程的关系转化为两个函数的图象交点问题是解决本题的关键.综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知正三棱锥底面的边长是$\frac{15}{2}$,高与侧棱的夹角为60°,求它的侧面积和表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设f(x)=ax2-ax+3.
(1)当a=-4时,设集合A={x∈R|f(x)<0},求A;
(2)若不等式$(\frac{1}{2})^{f(x)}$<4的解集为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.写出下列条件的椭圆的标准方程:
(1)焦点在x轴上,焦距等于4,并经过点P(3,-2$\sqrt{6}$);
(2)焦点坐标分别为(0,-4),(0,4),a=5;
(3)a+c=10,a-c=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知等比数列{an}的前n项和为Sn,且$\frac{{S}_{8}-{S}_{6}}{{S}_{6}-{S}_{4}}$=$\sqrt{2}$,则$\frac{{a}_{8}}{{a}_{4}}$=(  )
A.$\sqrt{2}$B.2C.4D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.化简tan$\root{α}{\frac{1}{si{n}^{2}α}-1}$,其中α是第二象限角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知直角△ABC的两直角边AB、AC的边长分别为方程x2-2(1+$\sqrt{3}$)x+4$\sqrt{3}$=0的两根,且AB<AC,斜边BC上有异于端点B、C的两点E、F,且EF=1,设∠EAF=θ,则tanθ的取值范围为($\frac{\sqrt{3}}{9}$,$\frac{4\sqrt{3}}{11}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若方程$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{{m}^{2}-4}$=3表示焦点在y轴上的双曲线,则m的取值范围是(  )
A.1<m<2B.m>2C.m<-2D.-2<m<2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=log2(x2-1)-log2(x+1)在x∈[3.5]上的值域为[1,2].

查看答案和解析>>

同步练习册答案