精英家教网 > 高中数学 > 题目详情
已知x=1是函数f(x)=
1
3
ax3-
3
2
x2+(a+1)x+5
的一个极值点.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若曲线y=f(x)与直线y=2x+m有三个交点,求实数m的取值范围.
分析:(I)利用三次函数在极值点处的导数为零,即可解得a的值,进而确定函数的解析式;
(II)将两曲线有三个交点问题,转化为函数g(x)=f(x)-(2x+m)有三个零点问题,利用导数研究函数g(x)的单调性和极值,找到问题的充要条件,列不等式即可解得m的范围
解答:解:(I)f′(x)=ax2-3x2+a+1
由f′(1)=0得:a-3+a+1=0
即a=1
f(x)=
1
3
x3-
3
2
x2+2x+5

(II)曲线y=f(x)与直线y=2x+m有三个交点
1
3
x3-
3
2
x2+2x+5
-2x-m=0有三个根
即g(x)=
1
3
x3-
3
2
x2+5-m
有三个零点
由g′(x)=x2-3x=0,得x=0或x=3
由g′(x)>0得x<0或x>3,由g′(x)<0得0<x<3
∴函数g(x)在(-∞,0)上为增函数,在(0,3)上为减函数,在(3,+∞)上为增函数
要使g(x)有三个零点,
只需
g(0)>0
g(3)<0
5-m>0
1
2
-m<0

解得:
1
2
<m<5
点评:本题主要考查了导数在函数极值、单调性中的应用,三次函数的图象和性质,构造函数研究函数零点分布问题,转化化归的思想方法
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x=1是函数f(x)=mx3-3(m+1)x2+nx+1的一个极值点,其中m,n∈R,m<0.
(Ⅰ)求m与n的关系表达式;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)当x∈[-1,1]时,函数y=f(x)的图象上任意一点的切线斜率恒大于3m,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

22、已知x=1是函数f(x)=x3-nx2+3(m+1)x+n+1(m、n∈R,m≠0)的一个极值点.
(1)求m与n的关系表达式;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

18、已知x=1是函数f(x)=x3-ax(a为参数)的一个极值点.
(1)求a的值;
(2)求x∈[0,2]时,函数f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x=1是函数f(x)=mx3-3(m+1)x2+nx+1的一个极值点,其中m,n∈R,m≠0
(1)求m与n的关系式;
(2)求f(x)的单调区间;
(3)设函数函数g(x)=
1
e
x2gex-
1
3
x3-x2,φ(x)=
2
3
x3-x2;试比较g(x)与φ(x)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x=1是函数f(x)=x3-ax(a为参数)的一个极值点.
(Ⅰ)求f(x)的解析式;
(Ⅱ)当x∈[0,2]时,求函数f(x)的最大值与最小值.

查看答案和解析>>

同步练习册答案