精英家教网 > 高中数学 > 题目详情
已知在矩形ABCD中,AB=2,BC=3,则
AB
+
BC
+
AC
的模等于(  )
A、4
B、5
C、
13
D、2
13
分析:将向量
AB
+
BC
+
AC
平方,利用向量的运算法则展开,利用向量的模的平方等于向量的平方求出值,再将值开方求出向量的模.
解答:解:(
AB
+
BC
+
AC
)
2
=
AB
2
+
BC
2
+
AC
2
+2(
AB
AC
+
AB
BC
+
AC
BC
)

=
AB
2
+
BC
2
+
AC
2
+2
AC
2

=4+9+39
=52
|
AB
+
BC
+
AC
|=2
13

故选D.
点评:求向量的模的问题,一般将向量模平方,利用向量模的平方等于向量的平方,再利用向量的运算法则求出值,将值开方即可.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示精英家教网,已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD,且PA=1.
(I)问当实数a在什么范围时,BC边上能存在点Q,使得PQ⊥QD?
(II)当BC边上有且仅有一个点Q使得PQ⊥OD时,求二面角Q-PD-A的余弦值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,已知在矩形ABCD中,
AD
=4
3
,设
AB
=a,
BC
=b,
BD
=c
,试求|
a
+
b
+
c
|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在矩形ABCD中,AB=5,BC=7,在其中任取一点P,使满足∠APB>90°,则P点出现的概率为
56
56

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网(理科做)如图所示已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD且PA=1.建立适当的空间坐标系,利用空间向量求解下列问题:
(1)求点P、B、D的坐标;
(2)当实数a在什么范围内取值时,BC边上存在点Q,使得PQ⊥QD;
(3)当BC边上有且仅有一个Q点,使得时PQ⊥QD,求二面角Q-PD-A的余弦值.

查看答案和解析>>

同步练习册答案