精英家教网 > 高中数学 > 题目详情
16.在△ABC中,角A,B,C的对边分别为a,b,c,且3(sin2B+sin2C-sin2A)=2$\sqrt{3}$sinBsinC.
(1)求tanA;
(2)若△ABC的面积为$\sqrt{6}$+$\sqrt{2}$,求a的最小值.

分析 (1)运用正弦定理和余弦定理,可得cosA=$\frac{\sqrt{3}}{3}$,由同角的基本关系式,即可得到tanA;
(2)运用三角形的面积公式,求得bc,再由余弦定理结合基本不等式,即可得到a的最小值.

解答 解:(1)由正弦定理可得,3(sin2B+sin2C-sin2A)=2$\sqrt{3}$sinBsinC,即为
3(b2+c2-a2)=2$\sqrt{3}$bc,
由余弦定理可得cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{\sqrt{3}}{3}$,
sinA=$\sqrt{1-(\frac{\sqrt{3}}{3})^{2}}$=$\frac{\sqrt{6}}{3}$,
tanA=$\frac{sinA}{cosA}$=$\sqrt{2}$;
(2)△ABC的面积为$\sqrt{6}$+$\sqrt{2}$,
即有$\frac{1}{2}$bcsinA=$\sqrt{2}$+$\sqrt{6}$,
即bc=6+2$\sqrt{3}$,
a2=b2+c2-2bccosA≥2bc-$\frac{2\sqrt{3}}{3}$bc=(2-$\frac{2\sqrt{3}}{3}$)(6+2$\sqrt{3}$)=8,
即有a$≥2\sqrt{2}$,
则当b=c时,a取得最小值,且为2$\sqrt{2}$.

点评 本题考查正弦定理和余弦定理,以及面积公式的运用,考查基本不等式求最值的方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知U=R,集合A={x|1≤x≤4},B={x|6-a≤x≤2a-1}.
(Ⅰ)若a=3,求A?B,B?(CUA);
(Ⅱ)若B⊆A,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.定义:在数列{an}中,若满足$\frac{{{a_{n+2}}}}{{{a_{n+1}}}}-\frac{{{a_{n+1}}}}{a_n}=d$,(d为常数),我们称{an}为“比等差数列”.已知在“比等差数列”{an}中,a1=a2=1,a3=2,则$\frac{{{a_{2014}}}}{{{a_{2011}}}}$的末位数字是(  )
A.6B.4C.2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知正项等比数列{an}的前n项和为Sn,若S3=2a3-a1,则该数列的公比为(  )
A.2B.$\frac{1}{2}$C.4D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=lgx的定义域为A,函数g(x)=$\sqrt{1-{x}^{2}}$的定义域为B,则A∪B等于(  )
A.[-1,+∞)B.[-1,1]C.(0,1]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若指数函数y=(2a+1)x在R上是增函数,实数a的取值范围是(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=x2-2x+2,x∈[-5,5]的值域为[1,37].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)的定义域为[-1,1],求函数F(x)=f(x)+f(1-x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知数列{an}满足3an+1+an=0,a1=4,则{an}的前10项和等于(  )
A.-6(1-3-10B.$\frac{1}{9}(1-{3^{-10}})$C.3(1-3-10D.3(1+3-10

查看答案和解析>>

同步练习册答案