精英家教网 > 高中数学 > 题目详情
设变量x,y满足约束条件
y≤x
x+y≥2
y≥3x-6
,则目标函数z=2x+y的最大值与最小值之差为(  )
A、2B、3C、4D、6
考点:简单线性规划
专题:数形结合,不等式的解法及应用
分析:由约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.
解答: 解:由约束条件
y≤x
x+y≥2
y≥3x-6
作出可行域如图,

联立
y=x
y=3x-6
,解得:B(3,3);
联立
y=x
x+y=2
,解得:C(1,1).
化目标函数为直线方程的斜截式y=-2x+z,
由图可知,当直线y=-2x+z过B点时,z最大,最大值为z=2×3+3=9.
当直线y=-2x+z过C点时,z最小,最小值为z=2×1+1=3.
∴目标函数z=2x+y的最大值与最小值之差为9-3=6.
故选:D.
点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

作出函数f(x)=|x-1|+|x+2|的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

求和:1+
3
22
+
4
23
+…+
n+1
2n

查看答案和解析>>

科目:高中数学 来源: 题型:

从数字1,3,5,7中任取三个,则这三个数字之和不小于12的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y,z为空间不同的直线或不同的平面,且直线不在平面内,下列说法中能保证“若x⊥z,y⊥z,则x∥y”为真命题的序号有
 
.(把所有的真命题全填上)
①x为直线,y,z为平面;
②x,y,z都为平面;
③x,y为直线,z为平面;
④x,y,z都为直线;
⑤x,y为平面,z为直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B是椭圆
x2
3
+
y2
2
=1的左右顶点,P、Q是C上关于x轴对称的两点,判断y1y2是否为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

圆O1:x2+y2+6x-7=0与圆O2:x2+y2+6y-27=0的位置关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

两灯塔A,B与海洋观察站C的距离都等于20km,灯塔A在C北偏东30°,B在C南偏东60°,则A,B之间相距(  )km.
A、20
B、30
C、40
D、20
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差不为0的等差数列{an}的前n项和为Sn,S4=16 a22=a1a5 
(1)求若数列{an}通项公式;
(2)若数列满足bn=an+2n,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案