精英家教网 > 高中数学 > 题目详情
20.已知f(x)=$\left\{\begin{array}{l}{-x,x>0}\\{{x}^{2},x<0}\end{array}\right.$,则f[f(x)]=(  )
A.$\left\{\begin{array}{l}{{x}^{2},x>0}\\{-{x}^{2},x<0}\end{array}\right.$B.$\left\{\begin{array}{l}{-{x}^{2},x>0}\\{{x}^{2},x<0}\end{array}\right.$
C.$\left\{\begin{array}{l}{-x,x>0}\\{{x}^{2},x<0}\end{array}\right.$D.$\left\{\begin{array}{l}{-x,x<0}\\{{x}^{2},x>0}\end{array}\right.$

分析 直接利用分段函数化简求解即可.

解答 解:f(x)=$\left\{\begin{array}{l}{-x,x>0}\\{{x}^{2},x<0}\end{array}\right.$,
则x>0时,f[f(x)]=f(-x)=(-x)2=x2
x<0时,f[f(x)]=f(x2)=-x2
∴f[f(x)]=$\left\{\begin{array}{l}-{x}^{2},x>0\\{x}^{2},x<0\end{array}\right.$.
故选:B.

点评 本题考查分段函数的应用,函数解析式的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.在数列{an},{bn}中,a1=1,b1=2,且对于任意的正整数m,n满足am+n=2aman,bm+n=bm+bn
(1)求数列{an},{bn}的通项公式;
(2)设cn=an•bn,求数列{cn}的前n项和Sn
(3)设dn=$\frac{1}{{b}_{n}•{b}_{n+1}}$,Tn是数列{dn}的前n项和,求使得Tn<$\frac{m}{2013}$对所有n∈N*都成立的最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知正项数列{an}前n项和为Sn,且对任意的n∈N,Sn=$\sqrt{{{a}_{1}}^{3}+{{a}_{2}}^{3}+…+{{a}_{n}}^{3}}$.
(1)求a1,a2,a3 的值.
(2)猜想数列{an}的通项公式并用数学归纳法证明;
(3)设bn=$\frac{2n+1}{{a}_{n}^{2}•{a}_{n+1}^{2}}$,数列{bn}前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在四面体ABCD中,AC=BD,E,F分别为AD,BC的中点,且EF=$\frac{\sqrt{2}}{2}$AC,∠BDC=90°,求证:BD⊥平面ACD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知cosα=-$\frac{3}{5}$,π<α<$\frac{3π}{2}$,则sin2α=$\frac{24}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.方程|x2+2x-3|=a(x-2)有四个实数根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.解不等式:|x-2|+|2x-1|>x+5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.判断下列对应是不是从A到B的映射:
(1)A=N,B=N*,f:x→|x-1|;
(2)A={x|0≤x≤6},B={y|0≤y≤2},f:x→y=$\frac{1}{2}$x;
(3)A={x|x≥3,x∈N},B={a|a≥0,a∈Z},f:x→a=x2-2x+4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,直三棱柱ABC-A1B1C1的底面是边长为2的正三角形,E,F分别是BC,CC1的中点.
(1)证明:AE⊥平面BCC1B1
(2)若AA1=$\sqrt{2}$,求三棱锥C-AEF的高.

查看答案和解析>>

同步练习册答案