A. | (k,$\frac{k+1}{k-1}$] | B. | (1,$\frac{k+1}{k-1}$] | C. | (1,k] | D. | [k,+∞) |
分析 先根据双曲线定义可知|PF2|-|PF1|=2a进而根据|PF2|=k|PF1|,求得|PF1|=$\frac{2a}{k-1}$,|PF2|=$\frac{2ka}{k-1}$,同时利用三角形中两边之和大于第三边的性质,推断出,|F1F2|<|PF1|+|PF2|,进而求得a和c的不等式关系,分析当P为双曲线顶点时,e=$\frac{k+1}{k-1}$且双曲线离心率大于1,最后综合答案可得.
解答 解:根据双曲线定义可知|PF2|-|PF1|=2a,即k|PF1|-|PF1|=2a.
∴|PF1|=$\frac{2a}{k-1}$.|PF2|=$\frac{2ka}{k-1}$
在△PF1F2中,|F1F2|<|PF1|+|PF2|,
2c<$\frac{2a(k+1)}{k-1}$,
∴e<$\frac{k+1}{k-1}$,
当p为双曲线顶点时,e=$\frac{k+1}{k-1}$
又∵双曲线e>1,
∴1<e≤$\frac{k+1}{k-1}$
故选:B.
点评 本题主要考查了双曲线的简单性质,三角形边与边之间的关系.解题的时候一定要注意点P在双曲线顶点位置时的情况,以免遗漏答案.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 4 | B. | 8 | C. | 8$\sqrt{3}$ | D. | 16$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com