精英家教网 > 高中数学 > 题目详情

【题目】已知奇函数的定义域为[-1,1],当时,

(1)求函数上的值域;

(2)若时,函数的最小值为-2,求实数λ的值。

【答案】(1);(2

【解析】

(1)利用函数的奇偶性、指数函数的单调性求出函数fx)在上的值域.

(2)根据fx)的范围,利用条件以及二次函数的性质,分类讨论求得实数λ的值.

(1)设x∈(0,1],则﹣x∈[﹣1,0)时,所以f(﹣x2x

又因为fx)为奇函数,所以有f(﹣x)=﹣fx),

所以当x∈(0,1]时,fx)=﹣f(﹣x)=2x,所以上的值域为(1,2],

(2)由(1)知当x∈(0,1]时,fx)∈(1,2],

所以fx)∈(,1].

tfx),则 t≤1,

gtf2xfx)+1=t2﹣λt+11

①当,即λ≤1时,gt)>g),无最小值,

②当1,即1<λ≤2时,gtming)=12,

解得λ=±2 (舍去).

③当1,即λ>2时,gtming(1)=﹣2,解得λ=4,

综上所述,λ=4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】20181024日,世界上最长的跨海大桥一港珠澳大桥正式通车在一般情况下,大桥上的车流速度单位:千米是车流密度单位:辆千米的函数当桥上的车流密度达到220千米时,将造成堵塞,此时车流速度为0;当车流密度不超过20千米时,车流速度为100千米时,研究表明:当时,车流速度v是车流密度x的一次函数.

时,求函数的表达式;

当车流密度x为多大时,车流量单位时间内通过桥上某观测点的车辆数,单位:辆可以达到最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A. 在统计学中,回归分析是检验两个分类变量是否有关系的一种统计方法

B. 线性回归方程对应的直线至少经过其样本数据点中的

一个点

C. 在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高

D. 在回归分析中,相关指数的模型比相关指数的模型拟合的效果差

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,设

(1)求函数的最小正周期;

(2)当时,求函数的最大值及最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“渐减数”是指每个数字比其左边数字小的正整数(如98765),若把所有的五位渐减数按从小到大的顺序排列,则第20个数为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】上饶某购物中心在开业之后,为了解消费者购物金额的分布,在当月的电脑消费小票中随机抽取张进行统计,将结果分成5组,分别是,制成如图所示的频率分布直方图(假设消费金额均在元的区间内).

1)若在消费金额为元区间内按分层抽样抽取6张电脑小票,再从中任选2张,求这2张小票均来自元区间的概率;

2)为做好五一劳动节期间的商场促销活动,策划人员设计了两种不同的促销方案:

方案一:全场商品打8.5折;

方案二:全场购物满200元减20元,满400元减50元,满600元减80元,满800元减120元,以上减免只取最高优惠,不重复减免.利用直方图的信息分析哪种方案优惠力度更大,并说明理由(直方图中每个小组取中间值作为该组数据的替代值).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面以任意角度截正方体,所截得的截面图形可以是_____填上所有你认为正确的序号

正三边形 正四边形 正五边形 正六边形 钝角三角形 等腰梯形 非矩形的平行四边形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数在区间上递减,则a的取值范围是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )

A. 1盏 B. 3盏 C. 5盏 D. 9盏

查看答案和解析>>

同步练习册答案