精英家教网 > 高中数学 > 题目详情
15.设函数f(x)是定义在(-∞,+∞)上的增函数,实数a使得f(1-ax-x2)<f(2-a)对于任意x∈[0,1]都成立,则实数a的取值范围是(  )
A.(-∞,1)B.[-2,0]C.(-2-2$\sqrt{2}$,-2+2$\sqrt{2}})$)D.[0,1]

分析 解法一:由条件得1-ax-x2<2-a对于x∈[0,1]恒成立,令g(x)=x2+ax-a+1,只需g(x)在[0,1]上的最小值大于0即可,分类讨论,求最值即可求出实数a的取值范围;
解法二:由1-ax-x2<2-a,得(1-x)a<x2+1,对x讨论,再分离参数,求最值,即可求出实数a的取值范围.

解答 解:法一:由条件得1-ax-x2<2-a对于x∈[0,1]恒成立
令g(x)=x2+ax-a+1,只需g(x)在[0,1]上的最小值大于0即可.
g(x)=x2+ax-a+1=(x+$\frac{a}{2}$)2-$\frac{{a}^{2}}{4}$-a+1.
①当-$\frac{a}{2}$<0,即a>0时,g(x)min=g(0)=1-a>0,∴a<1,故0<a<1;
②当0≤-$\frac{a}{2}$≤1,即-2≤a≤0时,g(x)min=g(-$\frac{a}{2}$)=-$\frac{{a}^{2}}{4}$-a+1>0,∴-2-2$\sqrt{2}$<a<-2+2$\sqrt{2}$,故-2≤a≤0;
③当-$\frac{a}{2}$>1,即a<-2时,g(x)min=g(1)=2>0,满足,故a<-2.
综上a<1.
法二:由1-ax-x2<2-a得(1-x)a<x2+1,
∵x∈[0,1],∴1-x≥0,
∴①当x=1时,0<2恒成立,此时a∈R;
②当x∈[0,1)时,a<$\frac{{x}^{2}+1}{1-x}$恒成立.
求当x∈[0,1)时,函数y=$\frac{{x}^{2}+1}{1-x}$的最小值.
令t=1-x(t∈(0,1]),则y=$\frac{{x}^{2}+1}{1-x}$=$\frac{(1-t)^{2}+1}{t}$=t+$\frac{2}{t}$-2,
而函数y=t+$\frac{2}{t}$-2是(0,1]上的减函数,所以当且仅当t=1,即x=0时,ymin=1.
故要使不等式在[0,1)上恒成立,只需a<1,
由①②得a<1.
故选:A

点评 本题考查恒成立问题,考查分离参数法的运用,利用函数的单调性求出函数的最值是解决本题的关键.注意要利用分类讨论的数学思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知甲、乙两名篮球运动员每次投篮命中的概率分别为$\frac{1}{2}$、p,甲、乙每次投篮是否投中相互之间没有影响,乙投篮3次均未命中的概率为$\frac{1}{27}$.
(1)求p的值;
(2)若甲投篮1次、乙投篮2次,两人投篮命中的次数的和记为X,求X的分布列和数学期望E(X)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若把函数y=cosx-$\sqrt{3}$sinx的图象向右平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值为(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.5人成一排,其中甲与乙不相邻的排法种数为72(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知-2,a1,a2,-8成等差数列,-2,b,-8成等比数列,则$\frac{{a}_{2}-{a}_{1}}{b}$等于(  )
A.$\frac{1}{4}$B.-$\frac{1}{2}$C.$\frac{1}{2}$或-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知动圆M与圆O1:x2+y2+6x+5=0外切,同时与圆O2:x2+y2-6x-91=0内切,曲线C为动圆圆心M的轨迹;则下列命题中:
(1)动圆圆心M的轨迹方程是$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{27}$=1;
(2)若∠O1MO2=60°,则S${\;}_{△{O}_{1}M{O}_{2}}$=27$\sqrt{3}$;
(3)以坐标原点为圆心半径为6的圆与曲线C没有公共点;
(4)动点M(x,y),(y≠0)分别与两定点(-6,0),(6,0)连线的斜率之积为-$\frac{3}{4}$,
其中正确命题的序号是:(1)(4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=sinx-$\frac{1}{{2{x^2}}}$,若$\frac{π}{3}<a<b<\frac{5π}{6}$,则(  )
A.f(a)>f(b)B.f(a)<f(b)C.f(a)=f(b)D.f(a)f(b)>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.下列命题正确的序号是①③
①命题“若a>b,则2a>2b”的否命题是真命题;
②若命题p:“$\frac{1}{x-1}$>0”,则;¬p:“$\frac{1}{x-1}$≤0”;
③若p是q的充分不必要条件,则¬p是¬q的必要不充分条件;
④方程ax2+x+a=0有唯一解的充要条件是a=±$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.甲、乙两所学校的代表队参加汉字听写大赛.在比赛第二阶段,两队各剩最后两名队员上场.甲队两名队员通过第二阶段比赛的概率分别
是0.6和0.8,乙队两名队员通过第二阶段比赛的概率都是0.7.通过了第二阶段比赛的队员,才能进入第三阶段比赛(若某队两个队员都没有通过第二阶段的比赛,则该队进入第三阶段比赛人数为0).所有参赛队员比赛互不影响,其过程、结果都是彼此独立的.
(Ⅰ)求第三阶段比赛,甲、乙两队人数相等的概率;
(Ⅱ)X表示第三阶段比赛甲、乙两队的人数差的绝对值,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案