精英家教网 > 高中数学 > 题目详情
下面四个命题:
①若直线平面,则内任何直线都与平行;
②若直线平面,则内任何直线都与垂直;
③若平面平面,则内任何直线都与平行;
④若平面平面,则内任何直线都与垂直。
其中正确的两个命题是(  )
A.①②B.②③C.③④D.②④
B.

试题分析:因为直线平面,所以直线a与平面内的直线可能平行、异面,即①是假命题;
由直线与平面垂直的定义,若直线平面,则a垂直于平面内的任何一条直线。所以②是真命题;
因为平面平面,所以内任何直线都与平行,③是真命题。结合选项可知,选B。
点评:简单题,熟记立体几何中的基本结论是正确解题的关键。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,中,侧棱与底面垂直,,,点分别为的中点.

(1)证明:;
(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图正四棱锥的底面边长为,高,点在高上,且,记过点的球的半径为,则函数的大致图像是(   )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为两两不重合的平面,为两两不重合的直线,给出下列四个命题:
①若,则
②若,则
③若,则
④若,则其中真命
题的个数是 (  )))
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若a,b是两条直线,α是一个平面,则下列命题正确的是(   )
A.若a∥b,则a平行于经过b的任何平面
B.若a∥α,则a与α内任何直线平行
C.若a∥α,b∥α,则a∥b
D.若a∥b,a∥α,bα,则b∥α

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,直角梯形与等腰直角三角形所在的平面互相垂直.

(1)求直线与平面所成角的正弦值;
(2)线段上是否存在点,使// 平面?若存在,求出;若不存在,说明理由.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,边长为4的正方形与正三角形所在的平面相互垂直,且
分别为中点.

(1)求证:
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知ABCD是矩形,AD=2AB,E,F分别是线段AB,BC的中点,PA⊥平面ABCD.
(Ⅰ)求证:DF⊥平面PAF;
(Ⅱ)在棱PA上找一点G,使EG∥平面PFD,当PA=AB=4时,求四面体E-GFD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题13分)如图1,在三棱锥PABC中,平面ABCD为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示。

(1)证明:平面PBC
(2)求三棱锥DABC的体积;
(3)在的平分线上确定一点Q,使得平面ABD,并求此时PQ的长。

查看答案和解析>>

同步练习册答案