精英家教网 > 高中数学 > 题目详情

【题目】某地有三家工厂,分别位于矩形ABCD的顶点AB,及CD的中点P处,已知km,,为了处理三家工厂的污水,现要在矩形ABCD的区域上(含边界),且AB与等距离的一点O处建造一个污水处理厂,并铺设排污管道AOBOOP,设排污管道的总长为ykm

I)按下列要求写出函数关系式:

,将表示成的函数关系式;

,将表示成的函数关系式.

)请你选用(I)中的一个函数关系式,确定污水处理厂的位置,使三条排水管道总长度最短.

【答案】I

)选择函数模型P位于线段AB的中垂线上且距离AB处.

【解析】

I由条件可知PQ垂直平分AB

,又,所以

,则,所以

所以所求的函数关系式为

)选择函数模型

,又,所以

时,的减函数;

时,的增函数.

所以当

P位于线段AB的中垂线上且距离AB处.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,底面为菱形,底面,点上的一个动点,.

(1)当时,求证:

(2)当平面时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,棱形的边长为6, ,.将棱形沿对角线折起,得到三棱锥,点是棱的中点, .

(Ⅰ)求证:∥平面;

(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点P21).

1)求椭圆C的方程,并求其离心率;

2)过点Px轴的垂线l,设点A为第四象限内一点且在椭圆C上(点A不在直线l上),点A关于l的对称点为A',直线A'PC交于另一点B.设O为原点,判断直线AB与直线OP的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系,已知直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为直线与曲线交于两点.

(1)求直线l的普通方程和曲线的直角坐标方程;

(2)已知点的极坐标为,的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为

1)求乙至多击目标2次的概率;

2)记甲击中目标的次数为,求的概率分布列及数学期望;

3)求甲恰好比乙多击中目标2次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,已知底面ABCD是边长为1的正方形,侧面PAD⊥平面ABCDPAPDPA与平面PBC所成角的正弦值为

1)求侧棱PA的长;

2)设EAB中点,若PA≥AB,求二面角BPCE的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一个六边形点阵,它的中心是1个点(第1层),第2层每边有2个点, 3层每边有3个点,,依此类推,若一个六边形点阵共有217个点,那么它的层数为(

A.10B.9C.8D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某火锅店为了解气温对营业额的影响,随机记录了该店1月份中5天的日营业额y(单位:千元)与该地当日最低气温x(单位:℃)的数据,如下表:

x

2

5

8

9

11

y

12

10

8

8

7

1)求y关于x的回归方程

2)判定yx之间是正相关还是负相关;若该地1月份某天的最低气温为6℃,用所求回归方程预测该店当日的营业额;

附:①.

②参考数据如下:

i

1

2

12

4

24

2

5

10

25

50

3

8

8

64

64

4

9

8

81

72

5

11

7

121

77

35

45

295

287

查看答案和解析>>

同步练习册答案