精英家教网 > 高中数学 > 题目详情

【题目】为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员名,其中种子选手名;乙协会的运动员名,其中种子选手名.从这名运动员中随机选择人参加比赛.

(1)设为事件“选出的人中恰有名种子选手,且这名种子选手来自同一个协会”求事件发生的概率;

(2)设为选出的人中种子选手的人数,求随机变量的分布列和数学期望.

【答案】(1)(2)分布列见解析,

【解析】试题分析:(1)从这名运动员中随机选择人参加比赛有种方法,而事件A包含种方法,最后根据古典概型概率求法得概率(2)先确定随机变量取法为,再利用组合求出对应概率。列表可得分布列,最后根据数学期望公式求期望

试题解析:解:(I)由已知,有

所以事件发生的概率为

(II)随机变量的所有可能取值为

.

所以,随机变量的分布列为

x

1

2

3

4

P

随机变量的数学期望

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(2016·重庆高二检测)如图三棱柱ABC-A1B1C1侧棱垂直底面ACB=90°AC=BC=AA1D是棱AA1的中点.

(1)证明平面BDC1⊥平面BDC.

(2)平面BDC1分此棱柱为两部分求这两部分体积的比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数的图象经过P34)点,求a的值;

2)比较大小,并写出比较过程;

3)若,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图四边形ABCD为菱形GACBD的交点BE⊥平面ABCD

(1)证明平面AEC⊥平面BED.

(2)若∠ABC=120°AEEC三棱锥E-ACD的体积为求该三棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数.

(1)若的定义域为,求实数的取值范围;

(2)当时,求函数的最小值

(3)是否存在非负实数,使得函数的定义域为,值域为,若存在,求出的值;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中, 是抛物线的焦点, 是抛物线上位于第一象限内的任意一点,过三点的圆的圆心为,点到抛物线的准线的距离为

(1)求抛物线的方程;

(2)若点的横坐标为,直线与抛物线有两个不同的交点 与圆有两个不同的交点,求当时, 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (R)

(1) ,求函数的极值;

2)是否存在实数使得函数在区间上有两个零点,若存在,求出的取值范围;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】线段AB的两端在直二面角αlβ的两个面内,并与这两个面都成30°角,则异面直线ABl所成的角是(  )

A. 30° B. 45°

C. 60° D. 75°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的离心率为,以原点O为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+=0相切.

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)若直线l:y=kx+m与椭圆C相交于A、B两点,且kOAkOB=,判断△AOB的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.

查看答案和解析>>

同步练习册答案