精英家教网 > 高中数学 > 题目详情

【题目】为了让学生更多的了解数学史知识,某中学高二年级举办了一次追寻先哲的足迹,倾听数学的声音的数学史知识竞赛活动,共有800名学生参加了这次竞赛,为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,统计结果见下表.请你根据频率分布表解答下列问题:

序号

分组(分数)

组中值

频数(人数)

频率

1

65

0.12

2

75

20

3

85

0.24

4

95

合计

50

1

1)填充频率分布表中的空格;

2)规定成绩不低于85分的同学能获奖,请估计在参加的800名学生中大概有多少名同学获奖?

3)在上述统计数据的分析中有一项计算见算法流程图,求输出的的值.

【答案】(1)①为6,②为0.4,③为12,④为12,⑤为0.24;(2)288名(3)81

【解析】

1)根据已知条件和频率公式计算填充频率分布表中的空格;(2)先求出成绩不低于85分的同学的频率,再估计在参加的800名学生中大概有多少名同学获奖;(3)由题得,即得解.

1,所以①为6,所以②为0.4

,所以③为12,所以④为12

,所以⑤为0.24.

2)成绩不低于85分的同学的频率,

所以

即在参加的800名学生中大概有288名同学获奖.

3)由流程图得

即输出的值为81.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业生产一种产品,根据经验,其次品率与日产量 (万件)之间满足关系, (其中为常数,且,已知每生产1万件合格的产品以盈利2万元,但每生产1万件次品将亏损1万元(注:次品率=次品数/生产量, 如表示每生产10件产品,有1件次品,其余为合格品).

1)试将生产这种产品每天的盈利额 (万元)表示为日产量 (万件)的函数;

2)当日产量为多少时,可获得最大利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,平面平面,四边形为正方形,四边形为梯形,且

1)求证:平面

2)在线段上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的最小正周期、单调区间;

2)求函数在区间上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两家鞋帽商场销售同一批品牌运动鞋,每双标价为800元,甲、乙两商场销售方式如下:在甲商场买一双售价为780元,买两双每双售价为760元,依次类排,每多买一双则所买各双售价都再减少20元,但每双售价不能低于440元;乙商场一律按标价的75%销售.

1)分别写出在甲、乙两商场购买双运动鞋所需费用的函数解析式

2)某单位需购买一批此类品牌运动鞋作为员工福利,问:去哪家商场购买花费较少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,三棱柱ABCA1B1C1中,侧棱AA1⊥底面A1B1C1AA11,底面三角形A1B1C1是边长为2的正三角形,EBC中点,则下列说法正确的是(

CC1AB1所成角的余弦值为

AB⊥平面ACC1A1

③三角形AB1E为直角三角形

A1C1∥平面AB1E

A.①②B.③④C.①③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在区间上单调递减,则的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个圆锥底面半径为,高为

1)求圆锥的表面积.

2)求圆锥的内接正四棱柱表面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】棱长为1的正方体中,点分别在线段上运动(不包括线段端点),且.以下结论:①;②若点分别为线段的中点,则由线确定的平面在正方体上的截面为等边三角形;③四面体的体积的最大值为;④直线与直线的夹角为定值.其中正确的结论为______.(填序号)

查看答案和解析>>

同步练习册答案