精英家教网 > 高中数学 > 题目详情

【题目】已知函数

)求函数的最小值.

)是否存在一次函数,使得对于,总有,且成立?若存在,求出的表达式;若不存在,说明理由.

【答案】.(

【解析】试题分析(1)表示出,用导数判断其单调性,根据单调性即可求出最小值;
(2)由()知,从而得,于是h(x)可表示为关于k的一次函数,根据f(x)≥h(x)恒成立可求得k值,从而可求得h(x)表达式,再验证h(x))≥g(x)对一切x>0恒成立即可;

试题解析: 的定义域为

易知时, 时,

上单调递减,在上单调递增,

时, 取得最小值为

)由()知,

所以

故可证,代入

恒成立,

,则

时, ,当时,

上单调递减,在上单调递增,

对一切恒成立,

综上,存在一次函数,使得对于,总有

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

设函数f(x)=e2xaln x.

(1)讨论f(x)的导函数f′(x)零点的个数;

(2)证明:当a>0时,f(x)≥2aaln.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数

(1)解不等式

(2)若关于的方程的解集为空集,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥的侧面底面,底面是直角梯形,且, , 中点.

(1)求证: 平面

(2)若,求直线与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列 满足,且当时, ,令

)写出的所有可能的值.

)求的最大值.

)是否存在数列,使得?若存在,求出数列;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以坐标原点为极点, 轴正半轴为极轴,建立极坐标系,点的极坐标为,直线的极坐标方程为,且过点,曲线的参考方程为为参数).

(1)求曲线上的点到直线的距离的最大值与最小值;

(2)过点与直线平行的直线与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的切线斜率为2.

(Ⅰ)求的单调区间和极值;

(Ⅱ)若上无解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以为极点,轴非负半轴为极轴建立坐标系,已知曲线的极坐标方程为,直线的参数方程为: 为参数),两曲线相交于两点.

1)写出曲线的直角坐标方程和直线的普通方程;

2)若的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形均为菱形, ,且.

(1)求证: 平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案