【题目】已知函数, .
(Ⅰ)求函数的最小值.
(Ⅱ)是否存在一次函数,使得对于,总有,且成立?若存在,求出的表达式;若不存在,说明理由.
【答案】(Ⅰ).(Ⅱ).
【解析】试题分析:(1)表示出,用导数判断其单调性,根据单调性即可求出最小值;
(2)由(Ⅰ)知,从而得,于是h(x)可表示为关于k的一次函数,根据f(x)≥h(x)恒成立可求得k值,从而可求得h(x)表达式,再验证h(x))≥g(x)对一切x>0恒成立即可;
试题解析:(Ⅰ) 的定义域为, ,
,
易知时, , 时, ,
∴在上单调递减,在上单调递增,
∴当时, 取得最小值为.
(Ⅱ)由(Ⅰ)知, ,
所以,
故可证,代入,
得恒成立,
∴,
∴, ,
设,则,
当时, ,当时, ,
∴在上单调递减,在上单调递增,
∴,
即对一切恒成立,
综上,存在一次函数,使得对于,总有,
且, .
科目:高中数学 来源: 题型:
【题目】选修4-5:不等式选讲
设函数f(x)=e2x-aln x.
(1)讨论f(x)的导函数f′(x)零点的个数;
(2)证明:当a>0时,f(x)≥2a+aln.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列, , , 满足,且当时, ,令.
(Ⅰ)写出的所有可能的值.
(Ⅱ)求的最大值.
(Ⅲ)是否存在数列,使得?若存在,求出数列;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,以坐标原点为极点, 轴正半轴为极轴,建立极坐标系,点的极坐标为,直线的极坐标方程为,且过点,曲线的参考方程为(为参数).
(1)求曲线上的点到直线的距离的最大值与最小值;
(2)过点与直线平行的直线与曲线交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以为极点,轴非负半轴为极轴建立坐标系,已知曲线的极坐标方程为,直线的参数方程为: (为参数),两曲线相交于两点.
(1)写出曲线的直角坐标方程和直线的普通方程;
(2)若求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com