精英家教网 > 高中数学 > 题目详情
12.经过椭圆C:$\frac{x^2}{4}+\frac{y^2}{3}$=1的左焦点F1作直线l,与椭圆C交于A,B两点,且|AB|=$\frac{24}{7}$,求直线l的方程.

分析 求出椭圆的左焦点,通过直线的斜率是否存在,利用弦长公式求解直线的斜率,然后求解直线方程.

解答 (12分)解:椭圆C:$\frac{x^2}{4}+\frac{y^2}{3}$=1的左焦点F1(-1,0),
当直线斜率不存在时,|AB|=3不符合题意;
当直线斜率存在时,设直线y=k(x+1),与椭圆方程联立$\left\{\begin{array}{l}y=k(x+1)\\ \frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1\end{array}\right.$,
消去y化简可得(3+4k2)x2+8k2x+4k2-12=0,
=$-\frac{8{k}^{2}}{3+4{k}^{2}}$,x1x2=$\frac{4{k}^{2}-12}{3+4{k}^{2}}$,
∵|AB|=$\frac{24}{7}$,
∴由弦长公式得$\sqrt{1+{k}^{2}}$|x2-x1|=$\sqrt{1+{k}^{2}}•\sqrt{(-\frac{8{k}^{2}}{3+4{k}^{2}})^{2}-4×\frac{4{k}^{2}-12}{3+4{k}^{2}}}$=$\frac{24}{7}$,
解得k=±1,
直线方程为y=-x-1或y=x+1.

点评 本题考查直线与椭圆的位置关系的应用,弦长公式的应用,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知抛物线x2=2y过抛物线的焦点F的直线l交抛物线于P,Q两点,过P,Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.椭圆C的左、右焦点为F1(-1,0)、F2(1,0),且点P(1,$\frac{2\sqrt{3}}{3}$)在椭圆C上.
(1)求椭圆C的方程;
(2)设过F1的动直线l交椭圆C于A,B两点,求△F2AB面积的最大值及面积最大时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若集合${M}=\left\{{y\left|{y=\frac{1}{x^2}}\right.}\right\}$,${N}=\left\{{x\left|{y=\sqrt{x-2}}\right.}\right\}$,那么 M∩N=(  )
A.(0,+∞)B.[0,+∞)C.(2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}和{bn}满足an=log2bn(n∈N*),Sn为等差数列{an}的前n项和,且a1=1,b4=4b2
(1)求an与bn
(2)设cn=$\frac{1}{{S}_{n}}+\frac{1}{{b}_{n}}$,记数列{cn}的前n项和为Tn,求证:$\frac{3}{2}$≤Tn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={x|x<-3或x>4},B={x|x≥m}.若A∩B={x|x>4},则实数m的取值范围是(  )
A.(-4,3)B.[-3,4]C.(-3,4)D.(一∞,4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在空间四边形ABCD中,AB⊥AC,AB⊥BD,AC=2,AB=BD=1,AC与BD所成的角为60°,则CD=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$),f(x)的部分图象如图示,则关于y=f(x)错误的是(  )
A.最小正周期为π
B.向右平移$\frac{π}{6}$个单位得到函数y=sin(2x-$\frac{π}{6}$)
C.在区间[0,$\frac{π}{2}$]上的值域为[-$\frac{1}{2},\frac{1}{2}$]
D.向左平移$\frac{π}{6}$个单位得到的图象关于y轴对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.过椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点F1(-$\sqrt{3}$,0),而且过点C($\sqrt{3}$,$\frac{1}{2}$)
(1)求椭圆E的方程:
(2)过点C的直线l与椭圆E的另一交点为D,与y轴的交点为B.过原点O且平行于l的直线与椭圆的一个交点为H.若CD•CB=2OH2,求直线l的方程.
(3)设椭圆E的上下顶点分别为A1,A2,P是椭圆上异于A1,A2的任一点,直线PA1,PA2分别交x轴于点N,M,若直线0T与过点M,N的圆G相切,切点为T.线段0T的长是否为定值,若是并求出该定值,不是说明理由.

查看答案和解析>>

同步练习册答案