精英家教网 > 高中数学 > 题目详情
已知数列{an}满足:an=log(n+1)(n+2),n∈N+,我们把使a1•a2•a3•…•ak为整数的数k(k∈N+)叫做数列{an}的理想数.给出下列关于数列{an}的几个结论:
①数列{an}的最小理想数是2;
②数列{an}的理想数k的形式可以表示为k=4n-2;
③在区间[1,2011]内{an}的所有理想数之和为2026;
④对任意的n∈N+,有an+1>an
其中正确的序号为
 
分析:an=logn+1(n+2)=
log2(n+2)
log2(n+1)
,知a1•a2•…•ak=log2(n+2).log2(n+2)为整数的最小的n=2,数列{an}的最小理想数是2.{an}的理想数k的形式可以表示为k=2n-1,先利用换底公式与叠乘法把a1•a2•a3…ak化为log2(k+2);然后根据a1•a2•a3…ak为整数,可得k=2n-2;最后由等比数列前n项和公式解决问题.对任意n∈N*,有an+1<an.故正确结论的序号为①③.
解答:解:an=logn+1(n+2)=
log2(n+2)
log2(n+1)

∴a1•a2•…•ak=log2(n+2).
∵k∈N*,∴log2(n+2)为整数的最小的n=2,数列{an}的最小理想数是2.故①正确;
{an}的理想数k的形式可以表示为k=2n-1,故②不成立;
∴k∈[1,2011]内所有的幸运数的和
M=(22-2)+(23-2)+(24-2)+…+(210-2)
=
4(1-29)
1-2
-2×9=2026  (211-2>2011)
故答案为2026.
对任意n∈N*,有an+1<an.故③成立;
lim
n→+∞
an
=1,故④不成立.
故正确答案为①③.
故答案为:①③
点评:本题考查数列的性质和应用,本题在理解新定义的基础上,考查换底公式、叠乘法及等比数列前n项和公式,其综合性、技巧性是比较强的.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案