精英家教网 > 高中数学 > 题目详情

已知圆C1的圆心在直线l1:x-y=0上,且圆C1与直线数学公式相切于点A(数学公式,1),直线l2:x+y-8=0.
(1)求圆C1的方程;
(2)判断直线l2与圆C1的位置关系;
(3)已知半径为数学公式的动圆C2经过点(1,1),当圆C2与直线l2相交时,求直线l2被圆C2截得弦长的最大值.

解:(1)∵圆C1与直线相切于点
∴圆心C1在直线y=1上,…(1分)
又圆心C1在直线x-y=0上,
∴圆心C1为直线y=1和直线x-y=0的交点,即点(1,1).…(2分)
∵圆C1与直线相切,
∴圆C1的半径等于点(1,1)到直线的距离,
即圆C1的半径为
∴圆C1的方程为(x-1)2+(y-1)2=8…(5分)
(2)∵圆心C1到直线l2的距离为…(7分)
∴直线l2与圆C1相离.…(8分)
(3)由已知,可设圆C2的方程为(x-a)2+(y-b)2=8,
∵圆C2经过点(1,1),
∴(1-a)2+(1-b)2=8,即(a-1)2+(b-1)2=8,
∴圆C2的圆心C2(a,b)在圆C1上.…(10分)
设直线l2:x+y-8=0与圆C2的交点分别为M,N,MN的中点为P,
由圆的性质可得:
所以求直线l2被圆C2截得弦长MN的最大值即求C2P的最小值.…(12分)
又因为C1到直线l2的距离为
所以C2P的最小值为
所以

故直线l2被圆C2截得弦长的最大值为.…(14分)
分析:(1)根据圆C1与直线相切于点,可得圆心C1在直线y=1上,利用圆心C1在直线x-y=0上,可求圆心C1的坐标,利用圆C1与直线相切,可求圆C1的半径,从而可得圆C1的方程;
(2)利用圆心C1到直线l2的距离与半径的关系,可得直线l2与圆C1的位置关系;
(3)先确定圆C2的圆心C2(a,b)在圆C1上,设直线l2:x+y-8=0与圆C2的交点分别为M,N,MN的中点为P,进而可知求直线l2被圆C2截得弦长MN的最大值即求C2P的最小值,利用C2P的最小值为d-|C1C2|,可求直线l2被圆C2截得弦长的最大值.
点评:本题以直线与圆相切为载体,考查圆的标准方程,考查直线与圆的位置关系,考查圆中的弦长问题,熟练运用圆心到直线的距离是解题的关键,综合性强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C1的圆心在坐标原点O,且恰好与直线l1x-y-2
2
=0
相切.
(Ⅰ)求圆的标准方程;
(Ⅱ)设点A(x0,y0)为圆上任意一点,AN⊥x轴于N,若动点Q满足
OQ
=m
OA
+n
ON
,(其中m+n=1,m,n≠0,m为常数),试求动点Q的轨迹方程C2
(Ⅲ)在(Ⅱ)的结论下,当m=
3
2
时,得到曲线C,问是否存在与l1垂直的一条直线l与曲线C交于B、D两点,且∠BOD为钝角,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)已知圆C1的圆心在坐标原点O,且恰好与直线l1x-y-2
2
=0
相切.
(1)求圆的标准方程;
(2)设点A为圆上一动点,AN⊥x轴于N,若动点Q满足:
OQ
=m
OA
+(1-m)
ON
,(其中m为非零常数),试求动点Q的轨迹方程C2
(3)在(2)的结论下,当m=
3
2
时,得到曲线C,与l1垂直的直线l与曲线C交于B、D两点,求△OBD面积的最大值.

查看答案和解析>>

科目:高中数学 来源:期末题 题型:解答题

已知圆C1的圆心在坐标原点O,且恰好与直线l1相切.
(Ⅰ)求圆的标准方程;
(Ⅱ)设点A(x0,y0)为圆上任意一点,AN⊥x轴于N,若动点Q满足,(其中m+n=1,m,n≠0,m为常数),试求动点Q的轨迹方程C2
(Ⅲ)在(Ⅱ)的结论下,当时,得到曲线C,问是否存在与l1垂直的一条直线l与曲线C交于B、D两点,且∠BOD为钝角,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省淮安市盱眙县新马中学高三(上)第八周内测数学试卷(文科)(解析版) 题型:解答题

已知圆C1的圆心在坐标原点O,且恰好与直线l1相切.
(Ⅰ)求圆的标准方程;
(Ⅱ)设点A(x,y)为圆上任意一点,AN⊥x轴于N,若动点Q满足,(其中m+n=1,m,n≠0,m为常数),试求动点Q的轨迹方程C2
(Ⅲ)在(Ⅱ)的结论下,当时,得到曲线C,问是否存在与l1垂直的一条直线l与曲线C交于B、D两点,且∠BOD为钝角,请说明理由.

查看答案和解析>>

科目:高中数学 来源:《圆与方程》2012-2013学年贵州大学附中高考复习单元练习(解析版) 题型:解答题

已知圆C1的圆心在坐标原点O,且恰好与直线l1相切.
(Ⅰ)求圆的标准方程;
(Ⅱ)设点A(x,y)为圆上任意一点,AN⊥x轴于N,若动点Q满足,(其中m+n=1,m,n≠0,m为常数),试求动点Q的轨迹方程C2
(Ⅲ)在(Ⅱ)的结论下,当时,得到曲线C,问是否存在与l1垂直的一条直线l与曲线C交于B、D两点,且∠BOD为钝角,请说明理由.

查看答案和解析>>

同步练习册答案