精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若在定义域上不单调,求的取值范围;

(2)设分别是的极大值和极小值,且,求的取值范围.

【答案】(1);(2).

【解析】分析:由已知

(1)①若在定义域上单调递增,讨论可得②若在定义域上单调递减,讨论可得.据此可得.

(2)(1)知,.的两根分别为,设计算可得 换元讨论可得.

详解:由已知

(1)①若在定义域上单调递增,则,即(0,+∞)上恒成立,

,所以

②若在定义域上单调递减,则,即(0,+∞)上恒成立,

,所以.

因为在定义域上不单调,所以,即.

(2)(1)知,欲使(0,+∞)有极大值和极小值,必须.

,所以.

的两根分别为

的两根分别为,于是.

不妨设

上单调递增,在上单调递减,在上单调递增,

所以

所以

,于是.

,得.

因为

所以上为减函数.

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设等比数列a1a2a3a4的公比为q等差数列b1b2b3b4的公差为d,且.记i1234).

1)求证:数列不是等差数列;

2 .若数列是等比数列,求b2关于d的函数关系式及其定义域;

3)数列能否为等比数列?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某音乐院校举行“校园之星”评选活动,评委由本校全体学生组成,对两位选手,随机调查了20个学生的评分,得到下面的茎叶图:

所得分数

低于60分

60分到79分

不低于80分

分流方向

淘汰出局

复赛待选

直接晋级

(1)通过茎叶图比较两位选手所得分数的平均值及分散程度(不要求计算出具体值,得出结论即可);

(2)举办方将会根据评分结果对选手进行三向分流,根据所得分数,估计两位选手中哪位选手直接晋级的概率更大,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知方程(2λx-(1λy232λ)=0与点P(-22.

1)证明:对任意的实数λ,该方程都表示直线,且这些直线都经过同一定点,并求出这一定点的坐标;

2)证明:该方程表示的直线与点P的距离d小于.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方形中, ,现将沿折起,使折到的位置且在面的射影恰好在线段上.

(Ⅰ)证明:

(Ⅱ)求锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是是参数),

(Ⅰ)写出直线的普通方程和曲线的直角坐标方程;

(Ⅱ)设曲线经过伸缩变换得到曲线,曲线任一点为,求点直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】()(2017·开封二模)为备战某次运动会,某市体育局组建了一个由4个男运动员和2个女运动员组成的6人代表队并进行备战训练.

(1)经过备战训练,从6人中随机选出2人进行成果检验,求选出的2人中至少有1个女运动员的概率.

(2)检验结束后,甲、乙两名运动员的成绩用茎叶图表示如图:

计算说明哪位运动员的成绩更稳定.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校某班在一次数学测验中,全班N名学生的数学成绩的频率分布直方图如下,已知分数在110~120的学生有14人.

(1)求总人数N和分数在120~125的人数n;

(2)利用频率分布直方图,估算该班学生数学成绩的众数和中位数各是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】摩拜单车和小黄车等各种共享单车的普及给我们的生活带来了便利.已知某共享单车的收费标准是:每车使用不超过1小时(包含1小时)是免费的,超过1小时的部分每小时收费1元(不足1小时的部分按1小时计算,例如:骑行2.5小时收费2元).现有甲、乙两人各自使用该种共享单车一次.设甲、乙不超过1小时还车的概率分别为1小时以上且不超过2小时还车的概率分别为两人用车时间都不会超过3小时.

(Ⅰ)求甲乙两人所付的车费相同的概率;

)设甲乙两人所付的车费之和为随机变量的分布列及数学期望

查看答案和解析>>

同步练习册答案