精英家教网 > 高中数学 > 题目详情
如图,在棱长为4的正方体ABCD-A′B′C′D′中,E、F分别是AD、A′D′的中点,长为2的线段MN的一个端点M在线段EF上运动,另一个端点N在底面A′B′C′D′上运动,则线段MN的中点P的轨迹(曲面)与二面角A-A′D′-B′所围成的几何体的体积为(  )
分析:直接根据条件得到点P的轨迹是以点F为球心、1为半径的球面,进而求出结论.
解答:解:依题意可知|FP|=
1
2
|MN|=1,
因此点P的轨迹是以点F为球心、1为半径的球面的
1
4

于是所求的体积是
1
4
×(
4
3
π×13)=
1
3
π.
故选:C.
点评:解决此类问题的关键是熟悉结合体的结构特征与球的定义以及其表面积的计算公式.考查空间想象能力,计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•温州一模)如图,直线l⊥平面α,垂足为O,正四面体ABCD的棱长为4,C在平面α内,B是直线l上的动点,则当O到AD的距离为最大时,正四面体在平面α上的射影面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1的棱长为4,点P从B点出发,在正方形BCC1B1的边上按逆针方向按如下规律运动:设第n次运动的路程为an,且an=cos
2
+2
,第n次运动后P点所在位置为Pn,回到B点后不再运动.
(1)求二面角Pi-AC-B的余弦值;
(2)是否存在正整数i、j,使得直线PiPj与平面ACD1平行?若存在,找出所有符合条件的PiPj,并给出证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正三棱柱ABC-A1B1C1中,点D,D1分别为棱BC,B1C1的中点.
(1)求证:直线A1D1∥平面ADC1
(2)求证:平面ADC1⊥平面BCC1B1
(3)设底面边长为2,侧棱长为4,求二面角C1-AD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•安徽模拟)下面关于棱长为1的正方体ABCD-A1B1C1D1叙述正确的是
②④⑤
②④⑤

①任取四个顶点,共面的情况有8种;
②任取四个顶点顺次连接总共可构成10个正三棱锥;
③任取六个表面中的两个,两面平行的情况有5种;
④如图把正方体展开,正方体原下底面A1B1C1D1与标号4对应;
⑤在原正方体中任取两个顶点,这两点间的距离在区间(
10
2
3
)
内的情况有4种.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省温州市高三第一次适应性测试理科数学 题型:选择题

如图,直线平面,垂足为,正四面体的棱长为4,在平面内,

是直线上的动点,则当的距离为最大时,正四面体在平面上的射影面

积为(    )

    A.          B.   C.      D.

 

 

 

查看答案和解析>>

同步练习册答案