精英家教网 > 高中数学 > 题目详情
3.我们知道,对于指数函数f(x)=ax(a>0,a≠1)具有如下特征,对定义域R内任意实数m,n,都有f(m+n)=f(m)•f(n),现请你写出满足如上特征的一个非指数函数的函数解析式:f(x)=a2x(a>0,a≠1).

分析 根据指数的运算,可判断函数f(x)=a2x,(a>0,a≠1)满足f(m+n)=f(m)•f(n).

解答 解:比如,f(x)=a2x(a>0,a≠1),则:
f(m+n)=a2(m+n),f(m)•f(n)=a2m•a2n=a2(m+n)
∴该函数满足f(m+n)=f(m)f(n).
故答案为:f(x)=a2x,(a>0,a≠1).

点评 考查指数函数的定义,以及指数式的运算性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知集合A={1,3},B={0,1,a},A∪B={0,1,3},则a=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若函数$f(x)=sinωx-\sqrt{3}cosωx$,ω>0,x∈R,又f(x1)=2,f(x2)=0,且|x1-x2|的最小值为$\frac{3π}{2}$,则ω的值为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{4}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=e${\;}^{-\frac{1}{|x|}}$-ax2(其中e是自然对数的底数).
(Ⅰ)判断函数f(x)的奇偶性;
(Ⅱ)若f(x)≤0在定义域内恒成立,求实数a的取值范围;
(Ⅲ)若a=0,当x>0时,求证:对任意的正整数n都有f($\frac{1}{x}$)<n!x-n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.不等式$\frac{x+4}{x-3}$>0的解为{x|x<-4 或x>3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≥0}\\{1,x<0}\end{array}\right.$.
(1)写出该函数的单调递增区间;
(2)解不等式f(1-x2)>f(2x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,a、b分别为角A、B的对边,如果B=30°,C=105°,a=4,那么b=$2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x-aex,a∈R.
(Ⅰ)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线的方程;
(Ⅱ)若曲线y=f(x)与x轴有且只有一个交点,求a的取值范围;
(Ⅲ)设函数g(x)=x3,请写出曲线y=f(x)与y=g(x)最多有几个交点.(直接写出结论即可)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=2x2-mx+3在(-∞,2)上的减函数,在(2,+∞)上是增函数,则m的值为(  )
A.-2B.-8C.2D.8

查看答案和解析>>

同步练习册答案