精英家教网 > 高中数学 > 题目详情
f(x)=f(x)存在,则常数a=         .

-2?

解析:f(x)=0,∴f(x)=2+a=0.∴a=-2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=,若f(x)存在,则常数b=    (    )

A.0                 B.-1                    C.1                 D.e

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=,若f(x)存在,则常数b的值是(    )

A.O              B.1                 C.-1            D.e

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省无锡市滨湖区梅村高级中学高三(上)11月月考数学试卷(理科)(解析版) 题型:解答题

对于三次函数f(x)=ax3+bx2+cx+d(a≠0).
定义:(1)设f''(x)是函数y=f(x)的导数y=f'(x)的导数,若方程f''(x)=0有实数解x,则称点(x,f(x))为函数y=f(x)的“拐点”;
定义:(2)设x为常数,若定义在R上的函数y=f(x)对于定义域内的一切实数x,都有f(x+x)+f(x-x)=2f(x)成立,则函数y=f(x)的图象关于点(x,f(x))对称.
已知f(x)=x3-3x2+2x+2,请回答下列问题:
(1)求函数f(x)的“拐点”A的坐标
(2)检验函数f(x)的图象是否关于“拐点”A对称,对于任意的三次函数写出一个有关“拐点”的结论(不必证明)
(3)写出一个三次函数G(x),使得它的“拐点”是(-1,3)(不要过程)

查看答案和解析>>

科目:高中数学 来源:2011年辽宁省丹东二中高三数学试卷(文科)(解析版) 题型:解答题

对于三次函数f(x)=ax3+bx2+cx+d(a≠0).
定义:(1)设f''(x)是函数y=f(x)的导数y=f'(x)的导数,若方程f''(x)=0有实数解x,则称点(x,f(x))为函数y=f(x)的“拐点”;
定义:(2)设x为常数,若定义在R上的函数y=f(x)对于定义域内的一切实数x,都有f(x+x)+f(x-x)=2f(x)成立,则函数y=f(x)的图象关于点(x,f(x))对称.
已知f(x)=x3-3x2+2x+2,请回答下列问题:
(1)求函数f(x)的“拐点”A的坐标
(2)检验函数f(x)的图象是否关于“拐点”A对称,对于任意的三次函数写出一个有关“拐点”的结论(不必证明)
(3)写出一个三次函数G(x),使得它的“拐点”是(-1,3)(不要过程)

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设f(x),g(x)都是单调函数,有如下四个命题:
①若f(x)单调递增,g(x)单调递增,则f(x)-g(x)单调递增;
②若f(x)单调递增,g(x)单调递减,则f(x)-g(x)单调递增;
③若f(x)单调递减,g(x)单调递增,则f(x)-g(x)单调递减;
④若f(x)单调递减,g(x)单调递减,则f(x)-g(x)单调递减.

其中,正确的命题是


  1. A.
    ①②
  2. B.
    ①④
  3. C.
    ②③
  4. D.
    ②④

查看答案和解析>>

同步练习册答案