精英家教网 > 高中数学 > 题目详情

【题目】若函数同时满足:(1)对于定义域上的任意,恒有;(2)对于定义域上的任意,当时,恒有,则称函数为“理想函数”.给出下列四个函数中:①; ②; ③;④,则被称为“理想数”的有________(填相应的序号).

【答案】4

【解析】

由“理想函数”的定义可知:若是“理想函数”,则为定义域上的单调递减的奇函数,将四个函数一一判断即可.

是“理想函数”,则满足以下两条:

对于定义域上的任意,恒有,即,则函数是奇函数;

对于定义域上的任意,当时,恒有

时,,即函数是单调递减函数.

为定义域上的单调递减的奇函数.

1在定义域上既是奇函数,但不是减函数,所以不是“理想函数”;

2在定义域上是偶函数,所以不是“理想函数”;

3不是奇函数,所以不是“理想函数”;

4,在定义域上既是奇函数,又是减函数,所以是“理想函数”.

故答案为:(4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,⊥底面的中点.

已知.求:

(1)三棱锥PABC的体积;

(2)异面直线BCAD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以坐标原点为圆心的圆与抛物线相交于不同的两点 ,与抛物线的准线相交于不同的两点 ,且.

(1)求抛物线的方程;

(2)若不经过坐标原点的直线与抛物线相交于不同的两点 ,且满足.证明直线过定点,并求出点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车的燃油效率是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )

A. 消耗1升汽油,乙车最多可行驶5千米

B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多

C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油

D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥PABCD中,PA⊥底面ABCDPA=2,∠ABC=90°,BC=1, ,∠ACD=60°,ECD的中点.

(1)求证:BC∥平面PAE

(2)求点A到平面PCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某蛋糕店制作并销售一款蛋糕,当天每售出个获得利润元,未售出的每个亏损元.根据以往天的资料统计,得到如下需求量表.元日这天,此蛋糕店制作了这款蛋糕个.以(单位:个, )表示这天的市场需求量. (单位:元)表示这天出售这款蛋糕获得的利润.

需求量/个

天数

15

25

30

20

10

(1)当时,若时获得的利润为 时获得的利润为,试比较的大小;

(2)当时,根据上表,从利润不少于元的天数中,按需求量分层抽样抽取天,

(ⅰ)求这天中利润为元的天数;

(ⅱ)再从这天中抽取天做进一步分析,设这天中利润为元的天数为,求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题α:函数的定义域是R;命题β:在R上定义运算xy=x1-y).不等式(x-ax+a)<1对任意实数x都成立.

1)若αβ中有且只有一个真命题,求实数a的取值范围;

2)若αβ中至少有一个真命题,求实数a的取值范围;

3)若αβ中至多有一个真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高中非毕业班学生人数分布情况如下表,为了了解这2000个学生的体重情况,从中随机抽取160个学生并测量其体重数据,根据测量数据制作了下图所示的频率分布直方图.

(1)为了使抽取的160个样品更具代表性,宜采取分层抽样,请你给出一个你认为合适的分层抽样方案,并确定每层应抽取的样品个数;

(2)根据频率分布直方图,求的值,并估计全体非毕业班学生中体重在内的人数;

(3)已知高一全体学生的平均体重为,高二全体学生的平均体重为,试估计全体非毕业班学生的平均体重.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若f (x)在区间(-∞,2)上为单调递增函数,求实数a的取值范围;

(2)若a=0,x0<1,设直线y=g(x)为函数f (x)的图象在x=x0处的切线,求证:f (x)≤g(x).

查看答案和解析>>

同步练习册答案