精英家教网 > 高中数学 > 题目详情
已知双曲线C:
x2
4
-
y2
5
=1
的右焦点为F,过F的直线l与C交于两点A、B,若|AB|=5,则满足条件的l的条数为
3
3
分析:分类讨论,确定双曲线的几何量,利用|AB|=5,即可得到结论.
解答:解:若AB都在右支
若AB垂直x轴,a2=4,b2=5,c2=9,∴F(3,0),∴直线AB方程是x=3
代入
x2
4
-
y2
5
=1
,求得y=±
5
2
,∴|AB|=5,满足题意;
若A、B分别在两支上,∵a=2,∴顶点距离=2+2=4<5,∴满足|AB|=5的直线有两条,且关于x轴对称
综上,一共有3条
故答案为:3
点评:本题主要考查了双曲线的对称性,考查直线与双曲线的位置关系,考查了学生分析推理和分类讨论思想的运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线C:
x24
-y2=1
,P为C上的任意点.
(1)求证:点P到双曲线C的两条渐近线的距离的乘积是一个常数;
(2)设点A的坐标为(3,0),求|PA|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•西城区一模)已知双曲线C:
x2
4
-y2
=1,以C的右焦点为圆心且与其渐近线相切的圆方程为
(x-
5
2+y2=4,
(x-
5
2+y2=4,
,若动点A,B分别在双曲线C的两条渐近线上,且|AB|=2,则线段AB中点的轨迹方程为
16x2+y2=4
16x2+y2=4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南京二模)在平面直角坐标系xOy中,已知双曲线C:
x2
4
-
y2
3
=1
.设过点M(0,1)的直线l与双曲线C交于A、B两点,若
AM
=2
MB
,则直线l的斜率为
±
1
2
±
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
4
-y2=1
,F1,F2是它的两个焦点.
(Ⅰ)求与C有共同渐近线且过点(2,
5
)的双曲线方程;
(Ⅱ)设P是双曲线C上一点,∠F1PF2=60°,求△F1PF2的面积.

查看答案和解析>>

同步练习册答案