【题目】已知函数f(x)=||,实数m,n满足0<m<n,且f(m)=f(n),若f(x)在[m2,n]上的最大值为2,则
=________.
【答案】9.
【解析】
先分析得到f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,再分析得到0<m2<m<1,则f(x)在[m2,1)上单调递减,在(1,n]上单调递增,再根据函数的单调性得到m,n的值,即得解.
因为f(x)=|log3x|=,
所以f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,
由0<m<n且f(m)=f(n),可得,
则,所以0<m2<m<1,
则f(x)在[m2,1)上单调递减,在(1,n]上单调递增,
所以f(m2)>f(m)=f(n),则f(x)在[m2,n]上的最大值为f(m2)=-log3m2=2,
解得m=,则n=3,所以
=9.
故答案为:9
科目:高中数学 来源: 题型:
【题目】已知圆的圆心为原点
,且与直线
相切.
(1)求圆的方程;
(2)点在直线
上,过
点引圆
的两条切线
,
,切点为
,
,求证:直线
恒过定点.
(3)求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(
),且满足
.
(1)求a的值;
(2)设函数,
(
),若存在
,
,使得
成立,求实数t的取值范围;
(3)若存在实数m,使得关于x的方程恰有4个不同的正根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设全集U=R,集合A={x|2x-1≥1},B={x|x2-4x-5<0}.
(Ⅰ)求A∩B,(UA)∪(UB);
(Ⅱ)设集合C={x|m+1<x<2m-1},若B∩C=C,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com