精英家教网 > 高中数学 > 题目详情
函数f(x)=3x-1,x∈[-1,2]的值域是
 
考点:指数函数单调性的应用
专题:计算题,函数的性质及应用
分析:由题意可得出函数f(x)=3x-1是增函数,由单调性即可求值域.
解答: 解:函数f(x)=3x-1在[-1,2]上是增函数,
∴f(-1)≤f(x)≤f(2),即-
2
3
≤f(x)≤8,
∴函数的值域是[-
2
3
,8].
故答案为:[-
2
3
,8].
点评:本题考查指数函数的单调性,属于函数函数性质应用题,较容易.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若等差数列{an}满足a3+a4+a5>0,a3+a6<0,则当n=
 
时,{an}的前n项和最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中,正确的是
 

①任取x∈R,均有3x>2x
②当a>0,且a≠1时,有a3>a2
③y=(
3
-x是增函数;
④y=2|x|的最小值为1;
⑤在同一坐标系中,y=2x与y=2-x的图象关于y轴对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3ln(x+1)+ax2-2x,a∈R,若f(x)在区间(0,+∞)单调递增,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=ax2经过点(1,-
1
4
),则该抛物线的焦点坐标为(  )
A、(0,-
1
8
B、(0,-
1
2
C、(0,-1)
D、(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知几何体A-BCED的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形,已知几何体A-BCED的体积为16.

(1)求实数a的值;
(2)将直角三角形△ABD绕斜边AD旋转一周,求该旋转体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2x+5,求函数y=f(log
1
4
x)(2≤x≤4)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx-ax,a∈R.
(1)当x=1时,函数f(x)取得极值,求a的值;
(2)当0<a<
1
2
时,求函数f(x)在区间[1,2]上的最大值;
(3)当a=-1时,关于x的方程2mf(x)=x2(m>0)有唯一实数解,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=an2+2an(n∈N+).
(1)证明:{log2(an+1)}是等比数列,并求数列{an}的通项公式;
(2)记数列{bn}满足bn=
an+1
an+1
,求证:bn=
an+1-an
anan+1

查看答案和解析>>

同步练习册答案