精英家教网 > 高中数学 > 题目详情

【题目】如图,在多面体中,为矩形,为等腰梯形,,且,平面平面分别为的中点.

(Ⅰ)求证:平面

(Ⅱ)若,求多面体的体积.

【答案】(Ⅰ)证明见解析;(Ⅱ).

【解析】

(Ⅰ)取的中点.连接,可证,然后利用平面平面,可证平面.(Ⅱ)将多面体分为四棱锥和三棱锥两部分,将转化为,然后利用四棱锥和三棱锥的体积公式分别求出然后求和即可.

解:(Ⅰ)如图,取的中点.连接.

在矩形中,∵分别为线段的中点,

.

平面平面

平面.

中,∵分别为线段的中点,

.

平面平面

平面.

平面

∴平面平面

平面,∴平面.

(Ⅱ)如图,过点.

∵平面平面,平面平面平面

平面.

同理平面.

连接.中,∵

.

同理.

,∴等边的高为,即.

连接.

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在第二届乌镇互联网大会中, 为了提高安保的级别同时又为了方便接待,现将其中的五个参会国的人员安排酒店住宿,这五个参会国要在三家酒店选择一家,且每家酒店至少有一个参会国入住,则这样的安排方法共有

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于素数p,定义集合 .

.试求所有的素数p,使得

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线的参数方程为t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程是,曲线的极坐标方程是

1)求直线l和曲线的直角坐标方程,曲线的普通方程;

2)若直线l与曲线和曲线在第一象限的交点分别为PQ,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cy2=4x与椭圆E1ab0)有一个公共焦点F.设抛物线C与椭圆E在第一象限的交点为M.满足|MF|.

1)求椭圆E的标准方程;

2)过点P1)的直线交抛物线CAB两点,直线PO交椭圆E于另一点Q.PAB的中点,求△QAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线C的参数方程为为参数),以平面直角坐标系的原点O为极点,x轴正半轴为极轴建立极坐标系.

1)求曲线C的极坐标方程;

2)过点,倾斜角为的直线l与曲线C相交于MN两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的焦点为,点为抛物线上的动点,点为其准线上的动点,当为等边三角形时,则的外接圆的方程为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】利用独立性检验的方法调查高中生性别与爱好某项运动是否有关,通过随机调查200名高中生是否爱好某项运动,利用列联表,由计算可得,参照下表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5,024

6.635

7.879

10.828

得到的正确结论是(

A. 99%以上的把握认为“爱好该项运动与性别无关

B. 99%以上的把握认为“爱好该项运动与性别有关”

C. 在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别有关”

D. 在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】集合,对于正整数m,集合S的任一m元子集中必有一个数为另外m-1个数乘积的约数.则m的最小可能值为__________

查看答案和解析>>

同步练习册答案